Spaces:
Sleeping
Sleeping
File size: 6,082 Bytes
1ea42dc 5c5b5ca 1ea42dc 5c5b5ca 1ea42dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import tqdm
from transformers import LlamaModel, LlamaConfig
from transformers.modeling_utils import ModuleUtilsMixin
from midi_tokenizer import MIDITokenizer
class MIDIModel(nn.Module, ModuleUtilsMixin):
def __init__(self, tokenizer: MIDITokenizer, n_layer=12, n_head=16, n_embd=1024, n_inner=4096, flash=False,
*args, **kwargs):
super(MIDIModel, self).__init__()
self.tokenizer = tokenizer
self.net = LlamaModel(LlamaConfig(vocab_size=tokenizer.vocab_size,
hidden_size=n_embd, num_attention_heads=n_head,
num_hidden_layers=n_layer, intermediate_size=n_inner,
pad_token_id=tokenizer.pad_id, max_position_embeddings=4096))
self.net_token = LlamaModel(LlamaConfig(vocab_size=tokenizer.vocab_size,
hidden_size=n_embd, num_attention_heads=n_head // 4,
num_hidden_layers=n_layer // 4, intermediate_size=n_inner // 4,
pad_token_id=tokenizer.pad_id, max_position_embeddings=4096))
if flash:
self.net = self.net.to_bettertransformer()
self.net_token = self.net_token.to_bettertransformer()
self.lm_head = nn.Linear(n_embd, tokenizer.vocab_size, bias=False)
def forward_token(self, hidden_state, x=None):
"""
:param hidden_state: (batch_size, n_embd)
:param x: (batch_size, token_sequence_length)
:return: (batch_size, 1 + token_sequence_length, vocab_size)
"""
hidden_state = hidden_state.unsqueeze(1) # (batch_size, 1, n_embd)
if x is not None:
x = self.net_token.embed_tokens(x)
hidden_state = torch.cat([hidden_state, x], dim=1)
hidden_state = self.net_token.forward(inputs_embeds=hidden_state).last_hidden_state
return self.lm_head(hidden_state)
def forward(self, x):
"""
:param x: (batch_size, time_sequence_length, token_sequence_length)
:return: hidden (batch_size, time_sequence_length, n_embd)
"""
# merge token sequence
x = self.net.embed_tokens(x)
x = x.sum(dim=-2)
x = self.net.forward(inputs_embeds=x)
return x.last_hidden_state
def sample_top_p_k(self, probs, p, k):
probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
probs_sum = torch.cumsum(probs_sort, dim=-1)
mask = probs_sum - probs_sort > p
probs_sort[mask] = 0.0
mask = torch.zeros(probs_sort.shape[-1], device=probs_sort.device)
mask[:k] = 1
probs_sort = probs_sort * mask
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
shape = probs_sort.shape
next_token = torch.multinomial(probs_sort.reshape(-1, shape[-1]), num_samples=1).reshape(*shape[:-1], 1)
next_token = torch.gather(probs_idx, -1, next_token).reshape(*shape[:-1])
return next_token
@torch.inference_mode()
def generate(self, prompt=None, max_len=512, temp=1.0, top_p=0.98, top_k=20, amp=True):
tokenizer = self.tokenizer
max_token_seq = tokenizer.max_token_seq
if prompt is None:
input_tensor = torch.full((1, max_token_seq), tokenizer.pad_id, dtype=torch.long, device=self.device)
input_tensor[0, 0] = tokenizer.bos_id # bos
else:
prompt = prompt[:, :max_token_seq]
if prompt.shape[-1] < max_token_seq:
prompt = np.pad(prompt, ((0, 0), (0, max_token_seq - prompt.shape[-1])),
mode="constant", constant_values=tokenizer.pad_id)
input_tensor = torch.from_numpy(prompt).to(dtype=torch.long, device=self.device)
input_tensor = input_tensor.unsqueeze(0)
cur_len = input_tensor.shape[1]
bar = tqdm.tqdm(desc="generating", total=max_len - cur_len)
with bar, torch.cuda.amp.autocast(enabled=amp):
while cur_len < max_len:
end = False
hidden = self.forward(input_tensor)[0, -1].unsqueeze(0)
next_token_seq = None
event_name = ""
for i in range(max_token_seq):
mask = torch.zeros(tokenizer.vocab_size, dtype=torch.int64, device=self.device)
if i == 0:
mask[list(tokenizer.event_ids.values()) + [tokenizer.eos_id]] = 1
else:
param_name = tokenizer.events[event_name][i - 1]
mask[tokenizer.parameter_ids[param_name]] = 1
logits = self.forward_token(hidden, next_token_seq)[:, -1:]
scores = torch.softmax(logits / temp, dim=-1) * mask
sample = self.sample_top_p_k(scores, top_p, top_k)
if i == 0:
next_token_seq = sample
eid = sample.item()
if eid == tokenizer.eos_id:
end = True
break
event_name = tokenizer.id_events[eid]
else:
next_token_seq = torch.cat([next_token_seq, sample], dim=1)
if len(tokenizer.events[event_name]) == i:
break
if next_token_seq.shape[1] < max_token_seq:
next_token_seq = F.pad(next_token_seq, (0, max_token_seq - next_token_seq.shape[1]),
"constant", value=tokenizer.pad_id)
next_token_seq = next_token_seq.unsqueeze(1)
input_tensor = torch.cat([input_tensor, next_token_seq], dim=1)
cur_len += 1
bar.update(1)
if end:
break
return input_tensor[0].cpu().numpy() |