File size: 6,007 Bytes
1ea42dc
 
 
 
 
 
 
 
 
 
ff5739c
1ea42dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import tqdm
from transformers import LlamaModel, LlamaConfig

from midi_tokenizer import MIDITokenizer


class MIDIModel(nn.Module):
    def __init__(self, tokenizer: MIDITokenizer, n_layer=12, n_head=16, n_embd=1024, n_inner=4096, flash=False,
                 *args, **kwargs):
        super(MIDIModel, self).__init__()
        self.tokenizer = tokenizer
        self.net = LlamaModel(LlamaConfig(vocab_size=tokenizer.vocab_size,
                                          hidden_size=n_embd, num_attention_heads=n_head,
                                          num_hidden_layers=n_layer, intermediate_size=n_inner,
                                          pad_token_id=tokenizer.pad_id, max_position_embeddings=4096))
        self.net_token = LlamaModel(LlamaConfig(vocab_size=tokenizer.vocab_size,
                                                hidden_size=n_embd, num_attention_heads=n_head // 4,
                                                num_hidden_layers=n_layer // 4, intermediate_size=n_inner // 4,
                                                pad_token_id=tokenizer.pad_id, max_position_embeddings=4096))
        if flash:
            self.net = self.net.to_bettertransformer()
            self.net_token = self.net_token.to_bettertransformer()
        self.lm_head = nn.Linear(n_embd, tokenizer.vocab_size, bias=False)

    def forward_token(self, hidden_state, x=None):
        """

        :param hidden_state: (batch_size, n_embd)
        :param x: (batch_size, token_sequence_length)
        :return: (batch_size, 1 + token_sequence_length, vocab_size)
        """
        hidden_state = hidden_state.unsqueeze(1)  # (batch_size, 1, n_embd)
        if x is not None:
            x = self.net_token.embed_tokens(x)
            hidden_state = torch.cat([hidden_state, x], dim=1)
        hidden_state = self.net_token.forward(inputs_embeds=hidden_state).last_hidden_state
        return self.lm_head(hidden_state)

    def forward(self, x):
        """
        :param x: (batch_size, time_sequence_length, token_sequence_length)
        :return: hidden (batch_size, time_sequence_length, n_embd)
        """

        # merge token sequence
        x = self.net.embed_tokens(x)
        x = x.sum(dim=-2)
        x = self.net.forward(inputs_embeds=x)
        return x.last_hidden_state

    def sample_top_p_k(self, probs, p, k):
        probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
        probs_sum = torch.cumsum(probs_sort, dim=-1)
        mask = probs_sum - probs_sort > p
        probs_sort[mask] = 0.0
        mask = torch.zeros(probs_sort.shape[-1], device=probs_sort.device)
        mask[:k] = 1
        probs_sort = probs_sort * mask
        probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
        shape = probs_sort.shape
        next_token = torch.multinomial(probs_sort.reshape(-1, shape[-1]), num_samples=1).reshape(*shape[:-1], 1)
        next_token = torch.gather(probs_idx, -1, next_token).reshape(*shape[:-1])
        return next_token

    @torch.inference_mode()
    def generate(self, prompt=None, max_len=512, temp=1.0, top_p=0.98, top_k=20, amp=True):
        tokenizer = self.tokenizer
        max_token_seq = tokenizer.max_token_seq
        if prompt is None:
            input_tensor = torch.full((1, max_token_seq), tokenizer.pad_id, dtype=torch.long, device=self.device)
            input_tensor[0, 0] = tokenizer.bos_id  # bos
        else:
            prompt = prompt[:, :max_token_seq]
            if prompt.shape[-1] < max_token_seq:
                prompt = np.pad(prompt, ((0, 0), (0, max_token_seq - prompt.shape[-1])),
                                mode="constant", constant_values=tokenizer.pad_id)
            input_tensor = torch.from_numpy(prompt).to(dtype=torch.long, device=self.device)
        input_tensor = input_tensor.unsqueeze(0)
        cur_len = input_tensor.shape[1]
        bar = tqdm.tqdm(desc="generating", total=max_len - cur_len)
        with bar, torch.cuda.amp.autocast(enabled=amp):
            while cur_len < max_len:
                end = False
                hidden = self.forward(input_tensor)[0, -1].unsqueeze(0)
                next_token_seq = None
                event_name = ""
                for i in range(max_token_seq):
                    mask = torch.zeros(tokenizer.vocab_size, dtype=torch.int64, device=self.device)
                    if i == 0:
                        mask[list(tokenizer.event_ids.values()) + [tokenizer.eos_id]] = 1
                    else:
                        param_name = tokenizer.events[event_name][i - 1]
                        mask[tokenizer.parameter_ids[param_name]] = 1

                    logits = self.forward_token(hidden, next_token_seq)[:, -1:]
                    scores = torch.softmax(logits / temp, dim=-1) * mask
                    sample = self.sample_top_p_k(scores, top_p, top_k)
                    if i == 0:
                        next_token_seq = sample
                        eid = sample.item()
                        if eid == tokenizer.eos_id:
                            end = True
                            break
                        event_name = tokenizer.id_events[eid]
                    else:
                        next_token_seq = torch.cat([next_token_seq, sample], dim=1)
                        if len(tokenizer.events[event_name]) == i:
                            break
                if next_token_seq.shape[1] < max_token_seq:
                    next_token_seq = F.pad(next_token_seq, (0, max_token_seq - next_token_seq.shape[1]),
                                           "constant", value=tokenizer.pad_id)
                next_token_seq = next_token_seq.unsqueeze(1)
                input_tensor = torch.cat([input_tensor, next_token_seq], dim=1)
                cur_len += 1
                bar.update(1)
                if end:
                    break
        return input_tensor[0].cpu().numpy()