from pydantic import BaseModel, Field from typing import Type from langchain_core.tools import BaseTool from db.connection import db class GetEventPerformanceOutput(BaseModel): """Output for the get_event_performance tool""" event_name: str = Field(description="Name of the event") country: str = Field(description="Country where the event took place") location: str = Field(description="Specific location of the event") session_type: str = Field( description="Type of session (Practice, Qualifying, Race)") driver_count: int = Field( description="Number of drivers that participated") avg_lap_time: float = Field(description="Average lap time in seconds") best_lap_time: float = Field(description="Best lap time in seconds") max_finish_line_speed: float = Field( description="Maximum speed at finish line in km/h") avg_air_temp: float | None = Field( description="Average air temperature in celsius") avg_track_temp: float | None = Field( description="Average track temperature in celsius") rain_percentage: float = Field( description="Percentage of time it rained during the session") class GetEventPerformance(BaseTool): name: str = "get_event_performance" description: str = "useful for when you need to get performance statistics for Formula 1 events" def _run(self) -> list[GetEventPerformanceOutput]: """Use the tool.""" sql_file = open("tools/sql/event_performance.query.sql", "r") sql_query = sql_file.read() sql_file.close() response = db.run(sql_query) if not isinstance(response, str): response = str(response) # Remove the outer brackets and split by rows rows = response.strip('[]').split('), (') results = [] for row in rows: # Clean up the row string and split by columns clean_row = row.strip('()').split(',') # Convert to appropriate types and create output object event_data = GetEventPerformanceOutput( event_name=clean_row[0].strip("'"), country=clean_row[1].strip("'"), location=clean_row[2].strip("'"), session_type=clean_row[3].strip("'"), driver_count=int(float(clean_row[4])), avg_lap_time=float( clean_row[5]) if clean_row[5].strip() != 'None' else 0.0, best_lap_time=float( clean_row[6]) if clean_row[6].strip() != 'None' else 0.0, max_finish_line_speed=float( clean_row[7]) if clean_row[7].strip() != 'None' else 0.0, avg_air_temp=float( clean_row[8]) if clean_row[8].strip() != 'None' else None, avg_track_temp=float( clean_row[9]) if clean_row[9].strip() != 'None' else None, rain_percentage=float( clean_row[10]) if clean_row[10].strip() != 'None' else 0.0 ) results.append(event_data) return results