# shared_resources.py import torch # from transformers import AutoTokenizer, AutoModelForCausalLM from sentence_transformers import SentenceTransformer from datasets import load_dataset # from transformers import AutoProcessor, MusicgenForConditionalGeneration import re class SharedResources: def __init__(self): # Set the device self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Load SentenceTransformer self.sentence_transformer = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1") # Load the dataset self.dataset = load_dataset("subashdvorak/tiktok-story-data3", revision="embedded") self.data = self.dataset["train"] self.data = self.data.add_faiss_index("embeddings") # Create a single instance of SharedResources shared_resources = SharedResources()