Spaces:
Runtime error
Runtime error
File size: 4,434 Bytes
5831cdb 7118dfb 0189767 5831cdb af5c38f 5831cdb 85f69d5 5831cdb 7118dfb 5c5bd6b 7118dfb 5831cdb 4a81f80 5c5bd6b 7118dfb 85f69d5 3a6ff6b 85f69d5 3a6ff6b 1e77711 3a6ff6b 5831cdb 7118dfb 0189767 5831cdb 115169a 85f69d5 115169a 1e77711 115169a 0189767 115169a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
import gplace
from typing import TypedDict, Optional
class NearbySearchInput(TypedDict):
keyword: str
location_name: str
radius: int
place_type: Optional[str]
class NearbyDenseCommunityInput(TypedDict):
location_name: str
radius: int
# %%
def find_place_from_text(location:str):
"""Finds a place and related data from the query text"""
result = gplace.find_place_from_text(location)
r = result['candidates'][0]
return f"""
address: {r['formatted_address']}\n
location: {r['geometry']['location']}\n
location_name: {r['name']}\n
"""
# return f"""
# address: {r['formatted_address']}\n
# location: {r['geometry']['location']}\n
# location_name: {r['name']}\n
# """
# def nearby_search(keyword:str, location:str, radius=2000, place_type=None):
# """Searches for many places nearby the location based on a keyword. using keyword like \"coffee shop\", \"restaurants\". radius is the range to search from the location"""
# location = gplace.find_location(location, radius=radius)
# result = gplace.nearby_search(keyword, location, radius)
# strout = ""
# for r in result:
# strout = strout + f"""
# address: {r['vicinity']}\n
# location: {r['geometry']['location']}\n
# name: {r['name']}\n
# opening hours: {r['opening_hours']}\n
# rating: {r['rating']}\n
# plus code: {r['plus_code']['global_code']}\n\n
# """
# return strout
def nearby_search(input_dict: NearbySearchInput):
"""Searches for many places nearby the location based on a keyword. using keyword like \"coffee shop\", \"restaurants\". radius is the range to search from the location."""
max_results = 10
keyword = input_dict['keyword']
location = input_dict['location_name']
radius = input_dict.get('radius', 2000)
place_type = input_dict.get('place_type', None)
# Call the internal function to find location
location_coords = gplace.find_location(location, radius=radius)
result = gplace.nearby_search(keyword, location_coords, radius)
number_results = len(result)
strout = "number of results more than {}\n".format(number_results) if number_results==60 else "number of results: {}\n".format(number_results)
for r in result[:max_results]:
# Use .get() to handle missing keys
address = r.get('vicinity', 'N/A')
location_info = r.get('geometry', {}).get('location', 'N/A')
name = r.get('name', 'N/A')
opening_hours = r.get('opening_hours', 'N/A')
rating = r.get('rating', 'N/A')
plus_code = r.get('plus_code', {}).get('global_code', 'N/A')
# strout += f"""
# address: {address}\n
# location: {location_info}\n
# lacation_name: {name}\n
# opening hours: {opening_hours}\n
# rating: {rating}\n
# plus code: {plus_code}\n\n
# """
strout += f"""
**{name}**\n
address: {address}\n
rating: {rating}\n\n
"""
return strout
def nearby_dense_community(input_dict: NearbyDenseCommunityInput) -> str:
""" getting nearby dense community such as (community mall, hotel, school, etc), by location name, radius(in meters)
return list of location community nearby, name, community type.
"""
location = input_dict['location_name']
radius = input_dict['radius']
location_coords = gplace.find_location(location, radius=radius)
result = gplace.nearby_dense_community(location_coords, radius)
strout = ""
for r in result:
# Use .get() to handle missing keys
address = r.get('vicinity', 'N/A')
location_types = r.get('types', 'N/A')
name = r.get('name', 'N/A')
opening_hours = r.get('opening_hours', 'N/A')
rating = r.get('rating', 'N/A')
plus_code = r.get('plus_code', {}).get('global_code', 'N/A')
strout += f"""
name: {name}\n
types: {location_types}\n
"""
return strout
# %%
# gplace_tools.py
from langgraph.prebuilt import ToolNode
from langchain_core.tools import tool
from langchain_community.tools import GooglePlacesTool
find_place_from_text = tool(find_place_from_text)
# find_place_from_text = GooglePlacesTool()
nearby_search = tool(nearby_search)
nearby_dense_community = tool(nearby_dense_community)
|