File size: 8,335 Bytes
115169a
 
5831cdb
 
0c429cb
5831cdb
 
 
 
 
 
 
 
 
 
 
 
0c429cb
 
 
 
 
 
 
 
 
 
 
 
 
 
5831cdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7118dfb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5831cdb
0189767
 
0c429cb
 
0189767
 
0c429cb
 
 
 
 
0189767
 
 
 
 
0c429cb
0189767
 
 
 
 
 
0c429cb
 
0189767
0c429cb
5831cdb
 
 
 
0c429cb
5831cdb
ae3368c
115169a
 
 
 
fa2543e
 
a7abe3e
 
fa2543e
 
 
 
 
115169a
 
 
fa2543e
 
 
 
 
a7abe3e
 
 
 
 
115169a
5831cdb
115169a
 
 
 
7b69047
 
 
0c429cb
7b69047
 
 
 
 
0c429cb
7b69047
 
0c429cb
7b69047
 
 
 
 
0c429cb
7b69047
115169a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 29,
   "metadata": {},
   "outputs": [],
   "source": [
    "import gplace\n",
    "\n",
    "location = \"13.744677,100.5295593\"  # Latitude and Longitude\n",
    "keyword = \"ร้านกาแฟ\"\n",
    "result = gplace.nearby_search(keyword, location)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 30,
   "metadata": {},
   "outputs": [],
   "source": [
    "from typing import TypedDict, Optional\n",
    "\n",
    "class NearbyDenseCommunityInput(TypedDict):\n",
    "    location_name: str\n",
    "    radius: int"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 31,
   "metadata": {},
   "outputs": [],
   "source": [
    "def find_place_from_text(location:str):\n",
    "    \"\"\"Finds a place and related data from the query text\"\"\"\n",
    "    \n",
    "    result = gplace.find_place_from_text(location)\n",
    "    r = result['candidates'][0]\n",
    "    return f\"\"\"\n",
    "    address: {r['formatted_address']}\\n\n",
    "    location: {r['geometry']['location']}\\n\n",
    "    name: {r['name']}\\n\n",
    "    opening hours: {r['opening_hours']}\\n\n",
    "    rating: {r['rating']}\\n\n",
    "    \"\"\"\n",
    "    \n",
    "def nearby_search(keyword:str, location:str, radius=2000, place_type=None):\n",
    "    \"\"\"Searches for many places nearby the location based on a keyword. using keyword like \\\"coffee shop\\\", \\\"restaurants\\\". radius is the range to search from the location\"\"\"\n",
    "    location = gplace.find_location(location, radius=radius)\n",
    "    result = gplace.nearby_search(keyword, location, radius)\n",
    "    \n",
    "    strout = \"\"\n",
    "    for r in result:\n",
    "        # Use .get() to handle missing keys\n",
    "        address = r.get('vicinity', 'N/A')\n",
    "        location_info = r.get('geometry', {}).get('location', 'N/A')\n",
    "        name = r.get('name', 'N/A')\n",
    "        opening_hours = r.get('opening_hours', 'N/A')\n",
    "        rating = r.get('rating', 'N/A')\n",
    "        plus_code = r.get('plus_code', {}).get('global_code', 'N/A')\n",
    "        \n",
    "        strout += f\"\"\"\n",
    "        address: {address}\\n\n",
    "        location: {location_info}\\n\n",
    "        name: {name}\\n\n",
    "        opening hours: {opening_hours}\\n\n",
    "        rating: {rating}\\n\n",
    "        plus code: {plus_code}\\n\\n\n",
    "        \"\"\"\n",
    "    return strout\n",
    "\n",
    "def nearby_dense_community(input_dict: NearbyDenseCommunityInput) -> str:\n",
    "    \"\"\" getting nearby dense community such as (community mall, hotel, school, etc), by location name, radius(in meters)\n",
    "    return list of location community nearby, name, community type.\n",
    "    \"\"\"\n",
    "    location = input_dict['location_name']\n",
    "    radius = input_dict['radius']\n",
    "    \n",
    "    location_coords = gplace.find_location(location, radius=radius)\n",
    "    result = gplace.nearby_dense_community(location_coords, radius)\n",
    "    \n",
    "    strout = \"\"\n",
    "    for r in result:\n",
    "        # Use .get() to handle missing keys\n",
    "        address = r.get('vicinity', 'N/A')\n",
    "        location_types = r.get('types', 'N/A')\n",
    "        name = r.get('name', 'N/A')\n",
    "        opening_hours = r.get('opening_hours', 'N/A')\n",
    "        rating = r.get('rating', 'N/A')\n",
    "        plus_code = r.get('plus_code', {}).get('global_code', 'N/A')\n",
    "        \n",
    "        strout += f\"\"\"\n",
    "        name: {name}\\n\n",
    "        types: {location_types}\\n\n",
    "        \"\"\"\n",
    "    return strout\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 32,
   "metadata": {},
   "outputs": [],
   "source": [
    "# gplace_tools.py\n",
    "from langgraph.prebuilt import ToolNode\n",
    "from langchain_core.tools import tool\n",
    "from langchain_core.tools import Tool\n",
    "from langchain_google_community import GoogleSearchAPIWrapper\n",
    "from langchain_community.document_loaders import WebBaseLoader\n",
    "\n",
    "import utils\n",
    "\n",
    "utils.load_env()\n",
    "\n",
    "search = GoogleSearchAPIWrapper()\n",
    "\n",
    "find_place_from_text = tool(find_place_from_text)\n",
    "nearby_search = tool(nearby_search)\n",
    "google_search = Tool(\n",
    "    name=\"google_search\",\n",
    "    description=\"Search Google for recent results.\",\n",
    "    func=search.run,\n",
    ")\n",
    "web_loader = Tool(\n",
    "    name=\"google_search\",\n",
    "    description=\"Search Google for recent results.\",\n",
    "    func=WebBaseLoader,\n",
    ")\n",
    "\n",
    "tools = [find_place_from_text, nearby_search]\n",
    "\n",
    "# Create ToolNodes for each tool\n",
    "tool_node = ToolNode(tools)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 34,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "\"\\n        name: Bangkok\\n\\n        types: ['locality', 'political']\\n\\n        \\n        name: Metropoint Bangkok Hotel\\n\\n        types: ['lodging', 'point_of_interest', 'establishment']\\n\\n        \\n        name: The Grand Fourwings Convention Hotel\\n\\n        types: ['lodging', 'point_of_interest', 'establishment']\\n\\n        \\n        name: Hua Mak Indoor Stadium\\n\\n        types: ['point_of_interest', 'establishment']\\n\\n        \\n        name: B2 Bangkok Srinagarindra Boutique & Budget Hotel\\n\\n        types: ['clothing_store', 'lodging', 'point_of_interest', 'store', 'establishment']\\n\\n        \\n        name: HappyLand Mansion\\n\\n        types: ['lodging', 'point_of_interest', 'establishment']\\n\\n        \\n        name: Bangkok Swimming by Kru Jin\\n\\n        types: ['point_of_interest', 'establishment']\\n\\n        \\n        name: Aunchaleena grand Hotel\\n\\n        types: ['lodging', 'point_of_interest', 'establishment']\\n\\n        \\n        name: Anda Hotel\\n\\n        types: ['lodging', 'point_of_interest', 'establishment']\\n\\n        \\n        name: Grand Mandarin Residence\\n\\n        types: ['lodging', 'point_of_interest', 'establishment']\\n\\n        \\n        name: Wallada Place Hotel\\n\\n        types: ['lodging', 'point_of_interest', 'establishment']\\n\\n        \\n        name: NIDA Rooms Plubpla Bangkapi 591\\n\\n        types: ['lodging', 'point_of_interest', 'establishment']\\n\\n        \\n        name: Bangkok Interplace\\n\\n        types: ['lodging', 'restaurant', 'food', 'point_of_interest', 'establishment']\\n\\n        \\n        name: Vejthani Hospital\\n\\n        types: ['hospital', 'doctor', 'point_of_interest', 'health', 'establishment']\\n\\n        \\n        name: โรงแรม ชาลีน่า ปริ้นเซส Chaleena princess\\n\\n        types: ['lodging', 'point_of_interest', 'establishment']\\n\\n        \\n        name: Royal Pimand\\n\\n        types: ['lodging', 'point_of_interest', 'establishment']\\n\\n        \\n        name: Baron Residence Hotel\\n\\n        types: ['lodging', 'point_of_interest', 'establishment']\\n\\n        \\n        name: Ridwanun Islam Mosque\\n\\n        types: ['mosque', 'place_of_worship', 'point_of_interest', 'establishment']\\n\\n        \\n        name: Thep Phanom Building\\n\\n        types: ['point_of_interest', 'establishment']\\n\\n        \\n        name: Bang Kapi District\\n\\n        types: ['sublocality_level_1', 'sublocality', 'political']\\n\\n        \""
      ]
     },
     "execution_count": 34,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "nearby_dense_community({'location_name': 'ลุมพินี เซ็นเตอร์ ลาดพร้าว', 'radius': 8000})"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}