File size: 7,816 Bytes
9f816e8
82df0a3
 
 
 
 
 
af5c38f
 
 
 
 
 
9f816e8
 
82df0a3
 
 
 
 
af5c38f
fa2543e
0189767
82df0a3
 
9f816e8
82df0a3
 
 
 
 
 
 
 
 
 
 
 
5c5bd6b
82df0a3
 
 
 
af5c38f
 
82df0a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af5c38f
5c5bd6b
 
 
 
82df0a3
 
 
fa2543e
5c5bd6b
82df0a3
9f816e8
82df0a3
 
 
 
 
 
 
 
 
 
 
 
 
5c5bd6b
82df0a3
 
 
 
 
 
 
85f69d5
 
 
 
82df0a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a02d6ac
82df0a3
 
 
 
 
 
 
 
 
 
 
3ff5cea
82df0a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c5bd6b
 
82df0a3
 
 
 
 
 
5c5bd6b
 
 
82df0a3
 
 
 
 
 
 
 
 
 
 
 
3ff5cea
 
 
85f69d5
3ff5cea
 
 
85f69d5
3ff5cea
9fa71e3
3ff5cea
 
 
 
 
85f69d5
3ff5cea
82df0a3
 
 
 
 
 
 
af5c38f
85f69d5
82df0a3
 
 
 
9f816e8
 
 
 
 
 
 
 
 
 
fa2543e
85f69d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f816e8
 
82df0a3
 
 
 
 
 
 
ed6ce9e
82df0a3
 
 
 
af5c38f
82df0a3
af5c38f
 
 
 
 
37050e9
82df0a3
 
 
c028479
 
 
9f816e8
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
# %%
import os
import utils

utils.load_env()
os.environ['LANGCHAIN_TRACING_V2'] = "false"

# %%
from langchain.globals import set_debug, set_verbose

set_verbose(True)
set_debug(False)

# %%
from langchain_core.messages import HumanMessage
import operator
import functools

# for llm model
from langchain_openai import ChatOpenAI
# from langchain_community.chat_models import ChatOpenAI
from tools import find_place_from_text, nearby_search, nearby_dense_community, google_search
from typing import Annotated, Sequence, TypedDict
from langchain_core.messages import (
    AIMessage, 
    HumanMessage,
    BaseMessage,
    ToolMessage
)
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langgraph.graph import END, StateGraph, START

## Document vector store for context
from langchain_chroma import Chroma
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import CSVLoader
from langchain_openai import OpenAIEmbeddings
import glob
from langchain.tools.retriever import create_retriever_tool

def format_docs(docs):
    return "\n\n".join(doc.page_content for doc in docs)


## Document csv
# Specify the pattern
file_pattern = "document/*.csv"
file_paths = tuple(glob.glob(file_pattern))

all_docs = []

for file_path in file_paths:
    loader = CSVLoader(file_path=file_path)
    docs = loader.load()
    all_docs.extend(docs)  # Add the documents to the list

# Split text into chunks separated.
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
splits = text_splitter.split_documents(all_docs)

# Text Vectorization.
vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings())

# Retrieve and generate using the relevant snippets of the blog.
retriever = vectorstore.as_retriever()


## tools and LLM
retriever_tool = create_retriever_tool(
    retriever,
    "search_population_community_household_expenditures_data",
    "Use this tool to retrieve information about population, community and household expenditures. by searching distinct or province"
)

# Bind the tools to the model
tools = [retriever_tool, find_place_from_text, nearby_search, nearby_dense_community, google_search]  # Include both tools if needed
# tools = [find_place_from_text, nearby_search]

llm = ChatOpenAI(model="gpt-4o-mini", temperature=0.0)

## Create agents
def create_agent(llm, tools, system_message: str):
    """Create an agent."""
    prompt = ChatPromptTemplate.from_messages(
        [
            (
                "system",
                "You are a helpful AI assistant, collaborating with other assistants."
                " Use the provided tools to progress towards answering the question."
                " If you are unable to fully answer, that's OK, another assistant with different tools "
                " will help where you left off. Execute what you can to make progress."
                " If you or any of the other assistants have the final answer or deliverable,"
                " "
                " You have access to the following tools: {tool_names}.\n{system_message}",
            ),
            MessagesPlaceholder(variable_name="messages"),
        ]
    )
    prompt = prompt.partial(system_message=system_message)
    prompt = prompt.partial(tool_names=", ".join([tool.name for tool in tools]))
    #llm_with_tools = llm.bind(functions=[format_tool_to_openai_function(t) for t in tools])
    return prompt | llm.bind_tools(tools)
    #agent = prompt | llm_with_tools
    #return agent


## Define state
# This defines the object that is passed between each node
# in the graph. We will create different nodes for each agent and tool
class AgentState(TypedDict):
    messages: Annotated[Sequence[BaseMessage], operator.add]
    sender: str


# Helper function to create a node for a given agent
def agent_node(state, agent, name):
    result = agent.invoke(state)
    # We convert the agent output into a format that is suitable to append to the global state
    if isinstance(result, ToolMessage):
        pass
    else:
        result = AIMessage(**result.dict(exclude={"type", "name"}), name=name)
    return {
        "messages": [result],
        # Since we have a strict workflow, we can
        # track the sender so we know who to pass to next.
        "sender": name,
    }


## Define Agents Node
# Research agent and node
from prompt import agent_meta
agent_name = [meta['name'] for meta in agent_meta]

agents={}
agent_nodes={}

for meta in agent_meta:
    name = meta['name']
    prompt = meta['prompt']
    
    agents[name] = create_agent(
            llm,
            tools,
            system_message=prompt,
        )
    
    agent_nodes[name] = functools.partial(agent_node, agent=agents[name], name=name)


## Define Tool Node
from langgraph.prebuilt import ToolNode
from typing import Literal

tool_node = ToolNode(tools)

def router(state) -> Literal["call_tool", "__end__", "continue"]:
    # This is the router
    messages = state["messages"]
    last_message = messages[-1]
    if "continue" in last_message.content:
        return "continue"
    if last_message.tool_calls:
        # The previous agent is invoking a tool
        return "call_tool"
    if "FINAL ANSWER" in last_message.content:
        # Any agent decided the work is done
        return "__end__"
    else:
        return "continue"



## Workflow Graph
workflow = StateGraph(AgentState)

# add agent nodes
for name, node in agent_nodes.items():
    workflow.add_node(name, node)
    
workflow.add_node("call_tool", tool_node)


workflow.add_conditional_edges(
    "analyst",
    router,
    {"continue": "data_collector", "call_tool": "call_tool", "__end__": END}
)

workflow.add_conditional_edges(
    "data_collector",
    router,
    {"call_tool": "call_tool", "continue": "reporter", "__end__": END}
)

workflow.add_conditional_edges(
    "reporter",
    router,
    {"continue": "data_collector", "call_tool": "call_tool", "__end__": END}
)

workflow.add_conditional_edges(
    "call_tool",
    # Each agent node updates the 'sender' field
    # the tool calling node does not, meaning
    # this edge will route back to the original agent
    # who invoked the tool
    lambda x: x["sender"],
    {name:name for name in agent_name},
)
workflow.add_edge(START, "analyst")
graph = workflow.compile()

# %%
# from IPython.display import Image, display

# try:
#     display(Image(graph.get_graph(xray=True).draw_mermaid_png()))
# except Exception:
#     # This requires some extra dependencies and is optional
#     pass

# %%
# question = "ร้านกาแฟใกล้เซ็นทรัลเวิลด์"

# graph = workflow.compile()

# events = graph.stream(
#     {
#         "messages": [
#             HumanMessage(
#                 question
#             )
#         ],
#     },
#     # Maximum number of steps to take in the graph
#     {"recursion_limit": 20},
# )
# for s in events:
#     # print(s)
#     a = list(s.items())[0]
#     a[1]['messages'][0].pretty_print()

# %%
def submitUserMessage(user_input: str) -> str:
    graph = workflow.compile()

    events = graph.stream(
        {
            "messages": [
                HumanMessage(
                    user_input
                )
            ],
        },
        # Maximum number of steps to take in the graph
        {"recursion_limit": 20},
    )
    
    events = [e for e in events]
    
    response = list(events[-1].values())[0]["messages"][0]
    response = response.content
    response = response.replace("FINAL ANSWER", "")
    
    return response


# question = "วิเคราะห์ร้านอาหารแถวลุมพินี เซ็นเตอร์ ลาดพร้าว"
# submitUserMessage(question)