Spaces:
Runtime error
Runtime error
File size: 7,816 Bytes
9f816e8 82df0a3 af5c38f 9f816e8 82df0a3 af5c38f fa2543e 0189767 82df0a3 9f816e8 82df0a3 5c5bd6b 82df0a3 af5c38f 82df0a3 af5c38f 5c5bd6b 82df0a3 fa2543e 5c5bd6b 82df0a3 9f816e8 82df0a3 5c5bd6b 82df0a3 85f69d5 82df0a3 a02d6ac 82df0a3 3ff5cea 82df0a3 5c5bd6b 82df0a3 5c5bd6b 82df0a3 3ff5cea 85f69d5 3ff5cea 85f69d5 3ff5cea 9fa71e3 3ff5cea 85f69d5 3ff5cea 82df0a3 af5c38f 85f69d5 82df0a3 9f816e8 fa2543e 85f69d5 9f816e8 82df0a3 ed6ce9e 82df0a3 af5c38f 82df0a3 af5c38f 37050e9 82df0a3 c028479 9f816e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
# %%
import os
import utils
utils.load_env()
os.environ['LANGCHAIN_TRACING_V2'] = "false"
# %%
from langchain.globals import set_debug, set_verbose
set_verbose(True)
set_debug(False)
# %%
from langchain_core.messages import HumanMessage
import operator
import functools
# for llm model
from langchain_openai import ChatOpenAI
# from langchain_community.chat_models import ChatOpenAI
from tools import find_place_from_text, nearby_search, nearby_dense_community, google_search
from typing import Annotated, Sequence, TypedDict
from langchain_core.messages import (
AIMessage,
HumanMessage,
BaseMessage,
ToolMessage
)
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langgraph.graph import END, StateGraph, START
## Document vector store for context
from langchain_chroma import Chroma
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import CSVLoader
from langchain_openai import OpenAIEmbeddings
import glob
from langchain.tools.retriever import create_retriever_tool
def format_docs(docs):
return "\n\n".join(doc.page_content for doc in docs)
## Document csv
# Specify the pattern
file_pattern = "document/*.csv"
file_paths = tuple(glob.glob(file_pattern))
all_docs = []
for file_path in file_paths:
loader = CSVLoader(file_path=file_path)
docs = loader.load()
all_docs.extend(docs) # Add the documents to the list
# Split text into chunks separated.
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
splits = text_splitter.split_documents(all_docs)
# Text Vectorization.
vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings())
# Retrieve and generate using the relevant snippets of the blog.
retriever = vectorstore.as_retriever()
## tools and LLM
retriever_tool = create_retriever_tool(
retriever,
"search_population_community_household_expenditures_data",
"Use this tool to retrieve information about population, community and household expenditures. by searching distinct or province"
)
# Bind the tools to the model
tools = [retriever_tool, find_place_from_text, nearby_search, nearby_dense_community, google_search] # Include both tools if needed
# tools = [find_place_from_text, nearby_search]
llm = ChatOpenAI(model="gpt-4o-mini", temperature=0.0)
## Create agents
def create_agent(llm, tools, system_message: str):
"""Create an agent."""
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You are a helpful AI assistant, collaborating with other assistants."
" Use the provided tools to progress towards answering the question."
" If you are unable to fully answer, that's OK, another assistant with different tools "
" will help where you left off. Execute what you can to make progress."
" If you or any of the other assistants have the final answer or deliverable,"
" "
" You have access to the following tools: {tool_names}.\n{system_message}",
),
MessagesPlaceholder(variable_name="messages"),
]
)
prompt = prompt.partial(system_message=system_message)
prompt = prompt.partial(tool_names=", ".join([tool.name for tool in tools]))
#llm_with_tools = llm.bind(functions=[format_tool_to_openai_function(t) for t in tools])
return prompt | llm.bind_tools(tools)
#agent = prompt | llm_with_tools
#return agent
## Define state
# This defines the object that is passed between each node
# in the graph. We will create different nodes for each agent and tool
class AgentState(TypedDict):
messages: Annotated[Sequence[BaseMessage], operator.add]
sender: str
# Helper function to create a node for a given agent
def agent_node(state, agent, name):
result = agent.invoke(state)
# We convert the agent output into a format that is suitable to append to the global state
if isinstance(result, ToolMessage):
pass
else:
result = AIMessage(**result.dict(exclude={"type", "name"}), name=name)
return {
"messages": [result],
# Since we have a strict workflow, we can
# track the sender so we know who to pass to next.
"sender": name,
}
## Define Agents Node
# Research agent and node
from prompt import agent_meta
agent_name = [meta['name'] for meta in agent_meta]
agents={}
agent_nodes={}
for meta in agent_meta:
name = meta['name']
prompt = meta['prompt']
agents[name] = create_agent(
llm,
tools,
system_message=prompt,
)
agent_nodes[name] = functools.partial(agent_node, agent=agents[name], name=name)
## Define Tool Node
from langgraph.prebuilt import ToolNode
from typing import Literal
tool_node = ToolNode(tools)
def router(state) -> Literal["call_tool", "__end__", "continue"]:
# This is the router
messages = state["messages"]
last_message = messages[-1]
if "continue" in last_message.content:
return "continue"
if last_message.tool_calls:
# The previous agent is invoking a tool
return "call_tool"
if "FINAL ANSWER" in last_message.content:
# Any agent decided the work is done
return "__end__"
else:
return "continue"
## Workflow Graph
workflow = StateGraph(AgentState)
# add agent nodes
for name, node in agent_nodes.items():
workflow.add_node(name, node)
workflow.add_node("call_tool", tool_node)
workflow.add_conditional_edges(
"analyst",
router,
{"continue": "data_collector", "call_tool": "call_tool", "__end__": END}
)
workflow.add_conditional_edges(
"data_collector",
router,
{"call_tool": "call_tool", "continue": "reporter", "__end__": END}
)
workflow.add_conditional_edges(
"reporter",
router,
{"continue": "data_collector", "call_tool": "call_tool", "__end__": END}
)
workflow.add_conditional_edges(
"call_tool",
# Each agent node updates the 'sender' field
# the tool calling node does not, meaning
# this edge will route back to the original agent
# who invoked the tool
lambda x: x["sender"],
{name:name for name in agent_name},
)
workflow.add_edge(START, "analyst")
graph = workflow.compile()
# %%
# from IPython.display import Image, display
# try:
# display(Image(graph.get_graph(xray=True).draw_mermaid_png()))
# except Exception:
# # This requires some extra dependencies and is optional
# pass
# %%
# question = "ร้านกาแฟใกล้เซ็นทรัลเวิลด์"
# graph = workflow.compile()
# events = graph.stream(
# {
# "messages": [
# HumanMessage(
# question
# )
# ],
# },
# # Maximum number of steps to take in the graph
# {"recursion_limit": 20},
# )
# for s in events:
# # print(s)
# a = list(s.items())[0]
# a[1]['messages'][0].pretty_print()
# %%
def submitUserMessage(user_input: str) -> str:
graph = workflow.compile()
events = graph.stream(
{
"messages": [
HumanMessage(
user_input
)
],
},
# Maximum number of steps to take in the graph
{"recursion_limit": 20},
)
events = [e for e in events]
response = list(events[-1].values())[0]["messages"][0]
response = response.content
response = response.replace("FINAL ANSWER", "")
return response
# question = "วิเคราะห์ร้านอาหารแถวลุมพินี เซ็นเตอร์ ลาดพร้าว"
# submitUserMessage(question)
|