Spaces:
Runtime error
Runtime error
File size: 4,639 Bytes
115169a 5831cdb fa2543e 5831cdb fa2543e 5831cdb 7118dfb 5831cdb 0189767 5831cdb fa2543e 5831cdb 115169a fa2543e 115169a fa2543e 115169a 5831cdb 115169a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"import gplace\n",
"\n",
"location = \"13.744677,100.5295593\" # Latitude and Longitude\n",
"keyword = \"ร้านกาแฟ\"\n",
"result = gplace.nearby_search(keyword, location)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"def find_place_from_text(location:str):\n",
" \"\"\"Finds a place and related data from the query text\"\"\"\n",
" \n",
" result = gplace.find_place_from_text(location)\n",
" r = result['candidates'][0]\n",
" return f\"\"\"\n",
" address: {r['formatted_address']}\\n\n",
" location: {r['geometry']['location']}\\n\n",
" name: {r['name']}\\n\n",
" opening hours: {r['opening_hours']}\\n\n",
" rating: {r['rating']}\\n\n",
" \"\"\"\n",
" \n",
"def nearby_search(keyword:str, location:str, radius=2000, place_type=None):\n",
" \"\"\"Searches for many places nearby the location based on a keyword. using keyword like \\\"coffee shop\\\", \\\"restaurants\\\". radius is the range to search from the location\"\"\"\n",
" location = gplace.find_location(location, radius=radius)\n",
" result = gplace.nearby_search(keyword, location, radius)\n",
" \n",
" strout = \"\"\n",
" for r in result:\n",
" # Use .get() to handle missing keys\n",
" address = r.get('vicinity', 'N/A')\n",
" location_info = r.get('geometry', {}).get('location', 'N/A')\n",
" name = r.get('name', 'N/A')\n",
" opening_hours = r.get('opening_hours', 'N/A')\n",
" rating = r.get('rating', 'N/A')\n",
" plus_code = r.get('plus_code', {}).get('global_code', 'N/A')\n",
" \n",
" strout += f\"\"\"\n",
" address: {address}\\n\n",
" location: {location_info}\\n\n",
" name: {name}\\n\n",
" opening hours: {opening_hours}\\n\n",
" rating: {rating}\\n\n",
" plus code: {plus_code}\\n\\n\n",
" \"\"\"\n",
" return strout\n",
"\n",
"def nearby_dense_community(location:str, radius:int=2000):\n",
" \"\"\" getting nearby dense community such as (community mall, hotel, school, etc), by geomatric location, radius(in meters)\n",
" return list of location community nearby, name, community type.\n",
" \"\"\"\n",
" result = gplace.nearby_dense_community(location, radius)\n",
" \n",
" strout = \"\"\n",
" for r in result:\n",
" # Use .get() to handle missing keys\n",
" address = r.get('vicinity', 'N/A')\n",
" location_info = r.get('geometry', {}).get('location', 'N/A')\n",
" name = r.get('name', 'N/A')\n",
" opening_hours = r.get('opening_hours', 'N/A')\n",
" rating = r.get('rating', 'N/A')\n",
" plus_code = r.get('plus_code', {}).get('global_code', 'N/A')\n",
" \n",
" strout += f\"\"\"\n",
" name: {address}\\n\n",
" types: {location_info}\\n\n",
" \"\"\"\n",
" return strout"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"# gplace_tools.py\n",
"from langgraph.prebuilt import ToolNode\n",
"from langchain_core.tools import tool\n",
"from langchain_core.tools import Tool\n",
"from langchain_google_community import GoogleSearchAPIWrapper\n",
"import utils\n",
"\n",
"utils.load_env()\n",
"\n",
"search = GoogleSearchAPIWrapper()\n",
"\n",
"find_place_from_text = tool(find_place_from_text)\n",
"nearby_search = tool(nearby_search)\n",
"google_search = Tool(\n",
" name=\"google_search\",\n",
" description=\"Search Google for recent results.\",\n",
" func=search.run,\n",
")\n",
"\n",
"tools = [find_place_from_text, nearby_search]\n",
"\n",
"# Create ToolNodes for each tool\n",
"tool_node = ToolNode(tools)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|