File size: 4,701 Bytes
5831cdb
7118dfb
fa2543e
 
 
 
 
 
7118dfb
 
 
 
 
 
 
0189767
 
 
 
 
fa2543e
 
 
 
 
5831cdb
 
 
 
 
 
 
 
 
 
af5c38f
5831cdb
85f69d5
 
 
 
 
5831cdb
7118dfb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c5bd6b
7118dfb
 
 
 
 
 
 
 
5831cdb
4a81f80
5c5bd6b
 
7118dfb
 
 
 
 
 
 
 
85f69d5
 
3a6ff6b
85f69d5
 
 
 
 
3a6ff6b
 
1e77711
3a6ff6b
 
 
5831cdb
 
7118dfb
0189767
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa2543e
 
 
 
 
 
5831cdb
 
fa2543e
115169a
 
fa2543e
1e77711
115169a
fa2543e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import gplace
from typing import TypedDict, Optional
from langchain_google_community import GoogleSearchAPIWrapper
import utils

utils.load_env()

search = GoogleSearchAPIWrapper()


class NearbySearchInput(TypedDict):
    keyword: str
    location_name: str
    radius: int
    place_type: Optional[str]
    
    
class NearbyDenseCommunityInput(TypedDict):
    location_name: str
    radius: int
    
    
class GoogleSearchInput(TypedDict):
    keyword: str


# %%
def find_place_from_text(location:str):
    """Finds a place and related data from the query text"""
    
    result = gplace.find_place_from_text(location)
    r = result['candidates'][0]
    return f"""
    address: {r['formatted_address']}\n
    location: {r['geometry']['location']}\n
    location_name: {r['name']}\n
    """
    # return f"""
    # address: {r['formatted_address']}\n
    # location: {r['geometry']['location']}\n
    # location_name: {r['name']}\n
    # """
    
# def nearby_search(keyword:str, location:str, radius=2000, place_type=None):
#     """Searches for many places nearby the location based on a keyword. using keyword like \"coffee shop\", \"restaurants\". radius is the range to search from the location"""
#     location = gplace.find_location(location, radius=radius)
#     result = gplace.nearby_search(keyword, location, radius)
    
#     strout = ""
#     for r in result:
#         strout = strout + f"""
#         address: {r['vicinity']}\n
#         location: {r['geometry']['location']}\n
#         name: {r['name']}\n
#         opening hours: {r['opening_hours']}\n
#         rating: {r['rating']}\n
#         plus code: {r['plus_code']['global_code']}\n\n
#         """
#     return strout


def nearby_search(input_dict: NearbySearchInput):
    """Searches for many places nearby the location based on a keyword. using keyword like \"coffee shop\", \"restaurants\". radius is the range to search from the location."""
    
    max_results = 10
    keyword = input_dict['keyword']
    location = input_dict['location_name']
    radius = input_dict.get('radius', 2000)
    place_type = input_dict.get('place_type', None)

    # Call the internal function to find location
    location_coords = gplace.find_location(location, radius=radius)
    result = gplace.nearby_search(keyword, location_coords, radius)
    
    number_results = len(result)
    strout = "number of results more than {}\n".format(number_results) if number_results==60 else "number of results: {}\n".format(number_results)
    for r in result[:max_results]:
        # Use .get() to handle missing keys
        address = r.get('vicinity', 'N/A')
        location_info = r.get('geometry', {}).get('location', 'N/A')
        name = r.get('name', 'N/A')
        opening_hours = r.get('opening_hours', 'N/A')
        rating = r.get('rating', 'N/A')
        plus_code = r.get('plus_code', {}).get('global_code', 'N/A')
        
        # strout += f"""
        # address: {address}\n
        # location: {location_info}\n
        # lacation_name: {name}\n
        # opening hours: {opening_hours}\n
        # rating: {rating}\n
        # plus code: {plus_code}\n\n
        # """
        
        strout += f"""
        **{name}**\n
        address: {address}\n
        rating: {rating}\n\n
        """
    return strout


def nearby_dense_community(input_dict: NearbyDenseCommunityInput) -> str:
    """ getting nearby dense community such as (community mall, hotel, school, etc), by location name, radius(in meters)
    return list of location community nearby, name, community type.
    """
    location = input_dict['location_name']
    radius = input_dict['radius']
    
    location_coords = gplace.find_location(location, radius=radius)
    result = gplace.nearby_dense_community(location_coords, radius)
    
    strout = ""
    for r in result:
        # Use .get() to handle missing keys
        address = r.get('vicinity', 'N/A')
        location_types = r.get('types', 'N/A')
        name = r.get('name', 'N/A')
        opening_hours = r.get('opening_hours', 'N/A')
        rating = r.get('rating', 'N/A')
        plus_code = r.get('plus_code', {}).get('global_code', 'N/A')
        
        strout += f"""
        name: {name}\n
        types: {location_types}\n
        """
    return strout


def google_search(input_dict: GoogleSearchInput):
    """Search Google for recent results."""
    return search.run(input_dict['keyword'])


# %%
# gplace_tools.py
from langchain_core.tools import Tool
from langchain_core.tools import tool

google_search = tool(google_search)
find_place_from_text = tool(find_place_from_text)
nearby_search = tool(nearby_search)
nearby_dense_community = tool(nearby_dense_community)