Spaces:
Runtime error
Runtime error
File size: 3,379 Bytes
5831cdb 7118dfb 5831cdb af5c38f 5831cdb 85f69d5 5831cdb 7118dfb 5831cdb 4a81f80 82df0a3 5831cdb 7118dfb 85f69d5 3a6ff6b 85f69d5 3a6ff6b 1e77711 3a6ff6b 5831cdb 7118dfb 5831cdb 115169a 85f69d5 115169a 1e77711 115169a 85f69d5 5831cdb 115169a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
import gplace
from typing import TypedDict, Optional
class NearbySearchInput(TypedDict):
keyword: str
location_name: str
radius: int
place_type: Optional[str]
# %%
def find_place_from_text(location:str):
"""Finds a place and related data from the query text"""
result = gplace.find_place_from_text(location)
r = result['candidates'][0]
return f"""
address: {r['formatted_address']}\n
location: {r['geometry']['location']}\n
location_name: {r['name']}\n
"""
# return f"""
# address: {r['formatted_address']}\n
# location: {r['geometry']['location']}\n
# location_name: {r['name']}\n
# """
# def nearby_search(keyword:str, location:str, radius=2000, place_type=None):
# """Searches for many places nearby the location based on a keyword. using keyword like \"coffee shop\", \"restaurants\". radius is the range to search from the location"""
# location = gplace.find_location(location, radius=radius)
# result = gplace.nearby_search(keyword, location, radius)
# strout = ""
# for r in result:
# strout = strout + f"""
# address: {r['vicinity']}\n
# location: {r['geometry']['location']}\n
# name: {r['name']}\n
# opening hours: {r['opening_hours']}\n
# rating: {r['rating']}\n
# plus code: {r['plus_code']['global_code']}\n\n
# """
# return strout
def nearby_search(input_dict: NearbySearchInput):
"""Searches for many places nearby the location based on a keyword. using keyword like \"coffee shop\", \"restaurants\". radius is the range to search from the location."""
keyword = input_dict['keyword']
location = input_dict['location_name']
radius = input_dict.get('radius', 2000)
place_type = input_dict.get('place_type', None)
# Call the internal function to find location
location_coords = gplace.find_location(location, radius=radius)
result = gplace.nearby_search(keyword, location_coords, radius)
number_results = len(result)
strout = "number of results more than {}\n".format(number_results) if number_results==20 else "number of results: {}\n".format(number_results)
for r in result:
# Use .get() to handle missing keys
address = r.get('vicinity', 'N/A')
location_info = r.get('geometry', {}).get('location', 'N/A')
name = r.get('name', 'N/A')
opening_hours = r.get('opening_hours', 'N/A')
rating = r.get('rating', 'N/A')
plus_code = r.get('plus_code', {}).get('global_code', 'N/A')
# strout += f"""
# address: {address}\n
# location: {location_info}\n
# lacation_name: {name}\n
# opening hours: {opening_hours}\n
# rating: {rating}\n
# plus code: {plus_code}\n\n
# """
strout += f"""
**{name}**\n
address: {address}\n
rating: {rating}\n\n
"""
return strout
# %%
# gplace_tools.py
from langgraph.prebuilt import ToolNode
from langchain_core.tools import tool
from langchain_community.tools import GooglePlacesTool
find_place_from_text = tool(find_place_from_text)
# find_place_from_text = GooglePlacesTool()
nearby_search = tool(nearby_search)
tools = [find_place_from_text, nearby_search]
# Create ToolNodes for each tool
tool_node = ToolNode(tools)
|