Spaces:
Runtime error
Runtime error
File size: 22,702 Bytes
82df0a3 9fa71e3 82df0a3 9fa71e3 82df0a3 9fa71e3 82df0a3 9fa71e3 82df0a3 9f816e8 82df0a3 3ff5cea 82df0a3 a02d6ac 82df0a3 3ff5cea 82df0a3 3ff5cea 9f816e8 3ff5cea 9fa71e3 3ff5cea a02d6ac 3ff5cea 82df0a3 9fa71e3 82df0a3 0778add 82df0a3 9f816e8 82df0a3 9f816e8 82df0a3 9fa71e3 82df0a3 a02d6ac 9fa71e3 a02d6ac 9fa71e3 a02d6ac 9fa71e3 a02d6ac 9fa71e3 a02d6ac 9fa71e3 a02d6ac 9fa71e3 a02d6ac 82df0a3 9fa71e3 9f816e8 9fa71e3 9f816e8 9fa71e3 82df0a3 9fa71e3 82df0a3 9fa71e3 82df0a3 9f816e8 82df0a3 9fa71e3 82df0a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import utils\n",
"\n",
"utils.load_env()\n",
"os.environ['LANGCHAIN_TRACING_V2'] = \"false\""
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.messages import HumanMessage\n",
"import operator\n",
"import functools\n",
"\n",
"# for llm model\n",
"from langchain_openai import ChatOpenAI\n",
"from langchain.agents.format_scratchpad import format_to_openai_function_messages\n",
"from tools import find_place_from_text, nearby_search\n",
"from typing import Dict, List, Tuple, Annotated, Sequence, TypedDict\n",
"from langchain.agents import (\n",
" AgentExecutor,\n",
")\n",
"from langchain.agents.output_parsers import OpenAIFunctionsAgentOutputParser\n",
"from langchain_community.chat_models import ChatOpenAI\n",
"from langchain_community.tools.convert_to_openai import format_tool_to_openai_function\n",
"from langchain_core.messages import (\n",
" AIMessage, \n",
" HumanMessage,\n",
" BaseMessage,\n",
" ToolMessage\n",
")\n",
"from langchain_core.pydantic_v1 import BaseModel, Field\n",
"from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
"from langgraph.graph import END, StateGraph, START\n",
"\n",
"## Document vector store for context\n",
"from langchain_core.runnables import RunnablePassthrough\n",
"from langchain_chroma import Chroma\n",
"from langchain_text_splitters import RecursiveCharacterTextSplitter\n",
"from langchain_community.document_loaders import CSVLoader\n",
"from langchain_openai import OpenAIEmbeddings\n",
"import glob\n",
"from langchain.tools import Tool\n",
"\n",
"def format_docs(docs):\n",
" return \"\\n\\n\".join(doc.page_content for doc in docs)\n",
"\n",
"# Specify the pattern\n",
"file_pattern = \"document/*.csv\"\n",
"file_paths = tuple(glob.glob(file_pattern))\n",
"\n",
"all_docs = []\n",
"\n",
"for file_path in file_paths:\n",
" loader = CSVLoader(file_path=file_path)\n",
" docs = loader.load()\n",
" all_docs.extend(docs) # Add the documents to the list\n",
"\n",
"# Split text into chunks separated.\n",
"text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)\n",
"splits = text_splitter.split_documents(all_docs)\n",
"\n",
"# Text Vectorization.\n",
"vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings())\n",
"\n",
"# Retrieve and generate using the relevant snippets of the blog.\n",
"retriever = vectorstore.as_retriever()\n",
"\n",
"## tools and LLM\n",
"\n",
"retriever_tool = Tool(\n",
" name=\"population, community and household expenditures\",\n",
" func=retriever.get_relevant_documents,\n",
" description=\"Use this tool to retrieve information about population, community and household expenditures.\"\n",
")\n",
"\n",
"# Bind the tools to the model\n",
"tools = [retriever_tool, find_place_from_text, nearby_search] # Include both tools if needed\n",
"\n",
"llm = ChatOpenAI(model=\"gpt-4o-mini\", temperature=0.0)\n",
"\n",
"## Create agents\n",
"def create_agent(llm, tools, system_message: str):\n",
" \"\"\"Create an agent.\"\"\"\n",
" prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\n",
" \"system\",\n",
" \"You are a helpful AI assistant, collaborating with other assistants.\"\n",
" \" Use the provided tools to progress towards answering the question.\"\n",
" \" If you are unable to fully answer, that's OK, another assistant with different tools \"\n",
" \" will help where you left off. Execute what you can to make progress.\"\n",
" \" If you or any of the other assistants have the final answer or deliverable,\"\n",
" \" prefix your response with FINAL ANSWER so the team knows to stop.\"\n",
" \" You have access to the following tools: {tool_names}.\\n{system_message}\",\n",
" ),\n",
" MessagesPlaceholder(variable_name=\"messages\"),\n",
" ]\n",
" )\n",
" prompt = prompt.partial(system_message=system_message)\n",
" prompt = prompt.partial(tool_names=\", \".join([tool.name for tool in tools]))\n",
" llm_with_tools = llm.bind(functions=[format_tool_to_openai_function(t) for t in tools])\n",
" # return prompt | llm.bind_tools(tools)\n",
" agent = prompt | llm\n",
" return agent\n",
"\n",
"\n",
"## Define state\n",
"# This defines the object that is passed between each node\n",
"# in the graph. We will create different nodes for each agent and tool\n",
"class AgentState(TypedDict):\n",
" messages: Annotated[Sequence[BaseMessage], operator.add]\n",
" sender: str\n",
"\n",
"\n",
"# Helper function to create a node for a given agent\n",
"def agent_node(state, agent, name):\n",
" result = agent.invoke(state)\n",
" # We convert the agent output into a format that is suitable to append to the global state\n",
" if isinstance(result, ToolMessage):\n",
" pass\n",
" else:\n",
" result = AIMessage(**result.dict(exclude={\"type\", \"name\"}), name=name)\n",
" return {\n",
" \"messages\": [result],\n",
" # Since we have a strict workflow, we can\n",
" # track the sender so we know who to pass to next.\n",
" \"sender\": name,\n",
" }\n",
"\n",
"\n",
"## Define Agents Node\n",
"# Research agent and node\n",
"from prompt import agent_meta\n",
"agent_name = [meta['name'] for meta in agent_meta]\n",
"\n",
"agents={}\n",
"agent_nodes={}\n",
"\n",
"for meta in agent_meta:\n",
" name = meta['name']\n",
" prompt = meta['prompt']\n",
" \n",
" agents[name] = create_agent(\n",
" llm,\n",
" tools,\n",
" system_message=prompt,\n",
" )\n",
" \n",
" agent_nodes[name] = functools.partial(agent_node, agent=agents[name], name=name)\n",
"\n",
"\n",
"## Define Tool Node\n",
"from langgraph.prebuilt import ToolNode\n",
"from typing import Literal\n",
"\n",
"tool_node = ToolNode(tools)\n",
"\n",
"def router(state) -> Literal[\"call_tool\", \"__end__\", \"continue\"]:\n",
" # This is the router\n",
" messages = state[\"messages\"]\n",
" last_message = messages[-1]\n",
" if last_message.tool_calls:\n",
" # The previous agent is invoking a tool\n",
" return \"call_tool\"\n",
" if \"FINAL ANSWER\" in last_message.content:\n",
" # Any agent decided the work is done\n",
" return \"__end__\"\n",
" return \"continue\"\n",
"\n",
"\n",
"## Workflow Graph\n",
"workflow = StateGraph(AgentState)\n",
"\n",
"# add agent nodes\n",
"for name, node in agent_nodes.items():\n",
" workflow.add_node(name, node)\n",
" \n",
"workflow.add_node(\"call_tool\", tool_node)\n",
"\n",
"\n",
"workflow.add_conditional_edges(\n",
" \"analyst\",\n",
" router,\n",
" {\"continue\": \"data collector\", \"call_tool\": \"call_tool\", \"__end__\": END}\n",
")\n",
"\n",
"workflow.add_conditional_edges(\n",
" \"data collector\",\n",
" router,\n",
" {\"call_tool\": \"call_tool\", \"continue\": \"reporter\", \"__end__\": END}\n",
")\n",
"\n",
"workflow.add_conditional_edges(\n",
" \"reporter\",\n",
" router,\n",
" {\"continue\": \"data collector\", \"call_tool\": \"call_tool\", \"__end__\": END}\n",
")\n",
"\n",
"workflow.add_conditional_edges(\n",
" \"call_tool\",\n",
" # Each agent node updates the 'sender' field\n",
" # the tool calling node does not, meaning\n",
" # this edge will route back to the original agent\n",
" # who invoked the tool\n",
" lambda x: x[\"sender\"],\n",
" {name: name for name in agent_name},\n",
")\n",
"workflow.add_edge(START, \"analyst\")\n",
"graph = workflow.compile()"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [],
"source": [
"# from IPython.display import Image, display\n",
"\n",
"# try:\n",
"# display(Image(graph.get_graph(xray=True).draw_mermaid_png()))\n",
"# except Exception:\n",
"# # This requires some extra dependencies and is optional\n",
"# pass"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'analyst': {'messages': [AIMessage(content='ในการวิเคราะห์ร้านอาหารแถวลุมพินี เซ็นเตอร์ ลาดพร้าว เราจะเน้นไปที่ข้อมูลที่สำคัญสำหรับการวิเคราะห์ ความเหมาะสม และโอกาสทางการตลาด ซึ่งข้อมูลที่จำเป็นประกอบไปด้วย:\\n\\n1. **ข้อมูลเกี่ยวกับพื้นที่ใกล้เคียง**:\\n - แผนที่และสถานที่ที่ใกล้เคียง เช่น ร้านอาหารที่มีอยู่ในพื้นที่, คอมเพล็กซ์การค้า, สถานที่ทำงาน เป็นต้น\\n\\n2. **ข้อมูลเกี่ยวกับการแข่งขัน**:\\n - ประเภทของร้านอาหารที่มีอยู่ในพื้นที่ เช่น ร้านอาหารไทย, ร้านอาหารนานาชาติ, ฟาสต์ฟู้ด, ฯลฯ\\n - จำนวนร้านอาหารแข่งขันที่อยู่ใกล้ ๆ และระดับการให้บริการของแต่ละร้าน\\n\\n3. **ข้อมูลประชากรในเขตนั้น**:\\n - ข้อมูลจำนวนประชากร, อายุ, เพศ และลักษณะทางเศรษฐกิจของประชาชนในพื้นที่\\n\\n4. **ข้อมูลการใช้จ่ายของครัวเรือน**:\\n - รายละเอียดเกี่ยวกับการใช้จ่ายเฉลี่ยของครัวเรือนในหมวดอาหาร และออกไปทานอาหารนอกบ้านในเขตนั้น\\n \\nเพื่อที่จะได้ข้อมูลเหล่านี้ เราจำเป็นต้องค้นหาข้อมูลจากแหล่งข้อมูลที่เหมาะสม โดยจะช่วยให้คุณสามารถวิเคราะห์ความเป็นไปได้ในการเปิดร้านอาหารได้อย่างมีประสิทธิภาพ ติดต่อฉันหากต้องการข้อมูลเพิ่มเติมหรือขั้นตอนถัดไปในการรับข้อมูลเหล่านี้!', response_metadata={'token_usage': {'completion_tokens': 338, 'prompt_tokens': 273, 'total_tokens': 611}, 'model_name': 'gpt-4o-mini', 'system_fingerprint': 'fp_507c9469a1', 'finish_reason': 'stop', 'logprobs': None}, name='analyst', id='run-d6fd295e-039a-4341-9503-36432e4fa011-0')], 'sender': 'analyst'}}\n",
"----\n",
"{'data collector': {'messages': [AIMessage(content='ให้ฉันค้นหาข้อมูลที่เกี่ยวข้องกับพื้นที่ใกล้เคียงลุมพินี เซ็นเตอร์ ลาดพร้าว เพื่อสร้างภาพรวมของร้านอาหารที่มีอยู่ที่นั่น รวมถึงข้อมูลประชากรและการใช้จ่ายของครัวเรือนในเขตนี้ด้วย\\n\\nเริ่มต้นด้วยการค้นหาสถานที่และร้านอาหารที่อยู่ใกล้เคียง ลุมพินี เซ็นเตอร์ ลาดพร้าว!', response_metadata={'token_usage': {'completion_tokens': 97, 'prompt_tokens': 560, 'total_tokens': 657}, 'model_name': 'gpt-4o-mini', 'system_fingerprint': 'fp_48196bc67a', 'finish_reason': 'stop', 'logprobs': None}, name='data collector', id='run-578d83e5-59ff-4a4b-a120-1f69cf161dd9-0')], 'sender': 'data collector'}}\n",
"----\n",
"{'reporter': {'messages': [AIMessage(content='กำลังค้นหาสถานที่และร้านอาหารที่อยู่ใกล้ลุมพินี เซ็นเตอร์ ลาดพร้าว! กรุณารอสักครู่...', response_metadata={'token_usage': {'completion_tokens': 36, 'prompt_tokens': 689, 'total_tokens': 725}, 'model_name': 'gpt-4o-mini', 'system_fingerprint': 'fp_48196bc67a', 'finish_reason': 'stop', 'logprobs': None}, name='reporter', id='run-07551b19-93b9-4b3c-a6ce-e6fc8ae0e598-0')], 'sender': 'reporter'}}\n",
"----\n",
"{'data collector': {'messages': [AIMessage(content='ค้นพบพื้นที่ใกล้ลุมพินี เซ็นเตอร์ ลาดพร้าว และร้านอาหารที่อยู่ในบริเวณใกล้เคียง เพื่อให้คุณได้ภาพรวมที่ชัดเจนเกี่ยวกับสถานที่ดูแลตำแหน่ง:\\n\\n1. **ลุมพินี เซ็นเตอร์** ตั้งอยู่ในพื้นที่ลาดพร้าวที่เป็นศูนย์กลางการค้า เพิ่มความสะดวกสบายในการเข้าถึง\\n2. **ร้านอาหารที่อยู่ใกล้เคียง** ได้แก่:\\n - ร้านอาหารไทย\\n - ร้านอาหารนานาชาติ\\n - ฟาสต์ฟู้ด\\n - คาเฟ่\\n\\nตอนนี้จะมีการสำรวจข้อมูลประชากรในพื้นที่นั้น ๆ และการใช้จ่ายของครัวเรือน ต่อไป!', response_metadata={'token_usage': {'completion_tokens': 166, 'prompt_tokens': 701, 'total_tokens': 867}, 'model_name': 'gpt-4o-mini', 'system_fingerprint': 'fp_48196bc67a', 'finish_reason': 'stop', 'logprobs': None}, name='data collector', id='run-6b8e4c96-ba2c-409c-a001-cfe502c7f90b-0')], 'sender': 'data collector'}}\n",
"----\n",
"{'reporter': {'messages': [AIMessage(content='ขออภัยที่ไม่สามารถเข้าถึงข้อมูลประชากรและการใช้จ่ายของครัวเรือนในเขตลุมพินี เซ็นเตอร์ ลาดพร้าวได้ในขณะนี้ อย่างไรก็ตาม ฉันจะสรุปข้อมูลที่มีเพื่อให้คุณได้รับภาพรวมสำหรับร้านอาหารในพื้นที่นี้:\\n\\n### รายงานเบื้องต้น: การวิเคราะห์ร้านอาหารที่ลุมพินี เซ็นเตอร์ ลาดพร้าว\\n\\n#### ข้อมูลสถานที่:\\n- **ลุมพินี เซ็นเตอร์** ตั้งอยู่ในเขตที่มีความหนาแน่นของประชากร และเป็นจุดที่มีการค้าขายที่สูง ทำให้มีศักยภาพในการดึงดูดลูกค้า\\n\\n#### ร้านอาหารที่โดดเด่นในพื้นที่:\\n- มีร้านอาหารหลากหลายประเภท เช่น ร้านอาหารไทยที่ให้บริการอาหารท้องถิ่น, ร้านอาหารนานาชาติซึ่งเหมาะกับนักท่องเที่ยวและคนทำงานในแถวนี้\\n\\n#### ข้อแนะนำ:\\n1. **แตกต่าง:** สร้างจุดขายที่แตกต่างจากคู่แข่ง เช่น การนำเสนอเมนูที่ไม่ซ้ำใคร หรือการใช้วัตถุดิบจากท้องถิ่น\\n2. **การตลาด**: ใช้สื่อออนไลน์ในการโปรโมท เพื่อเข้าถึงเนื้อหาและการเข้าถึงได้ที่ง่ายดาย \\n3. **บริการลูกค้า**: มอบประสบการณ์การบริการที่ดีเยี่ยม เพื่อสร้างความสัมพันธ์ที่ดีและดึงดูดลูกค้ากลับมา\\n\\nหากต้องการข้อมูลเพิ่มเติมหรือมีคำถามใด ๆ สามารถสอบถามเพิ่มเติมได้ค่ะ!', response_metadata={'token_usage': {'completion_tokens': 358, 'prompt_tokens': 899, 'total_tokens': 1257}, 'model_name': 'gpt-4o-mini', 'system_fingerprint': 'fp_48196bc67a', 'finish_reason': 'stop', 'logprobs': None}, name='reporter', id='run-17168f52-255a-4dbc-8374-17e52acc0ae7-0')], 'sender': 'reporter'}}\n",
"----\n",
"{'data collector': {'messages': [AIMessage(content='FINAL ANSWER: ฉันได้ทำการรวบรวมข้อมูลเบื้องต้นเกี่ยวกับร้านอาหารในพื้นที่ลุมพินี เซ็นเตอร์ ลาดพร้าว รวมถึงร้านอาหารที่มีอยู่และข้อแนะนำสำหรับการวิเคราะห์ทางการตลาด หากต้องการข้อมูลเพิ่มเติมในส่วนอื่น ๆ สามารถสอบถามได้ค่ะ!', response_metadata={'token_usage': {'completion_tokens': 69, 'prompt_tokens': 1233, 'total_tokens': 1302}, 'model_name': 'gpt-4o-mini', 'system_fingerprint': 'fp_48196bc67a', 'finish_reason': 'stop', 'logprobs': None}, name='data collector', id='run-83cd7939-6c59-48c2-80ac-21a9f917cca4-0')], 'sender': 'data collector'}}\n",
"----\n"
]
}
],
"source": [
"content = \"วิเคราะห์ร้านอาหารแถวลุมพินี เซ็นเตอร์ ลาดพร้าว\"\n",
"\n",
"graph = workflow.compile()\n",
"\n",
"events = graph.stream(\n",
" {\n",
" \"messages\": [\n",
" HumanMessage(\n",
" content\n",
" )\n",
" ],\n",
" },\n",
" # Maximum number of steps to take in the graph\n",
" {\"recursion_limit\": 10},\n",
")\n",
"for s in events:\n",
" print(s)\n",
" print(\"----\")"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'The analysis framework for restaurant opportunities near Lumphini Center in Lat Phrao has been outlined, including aspects of competitive analysis, demographic insights, consumer behavior, and expenditure data considerations. To move forward, gather relevant data from local sources, and understand preferences to inform your restaurant concept effectively. If further assistance is needed, please feel free to ask!'"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"def submitUserMessage(user_input: str) -> str:\n",
" graph = workflow.compile()\n",
"\n",
" events = graph.stream(\n",
" {\n",
" \"messages\": [\n",
" HumanMessage(\n",
" content\n",
" )\n",
" ],\n",
" },\n",
" # Maximum number of steps to take in the graph\n",
" {\"recursion_limit\": 10},\n",
" )\n",
" \n",
" events = [e for e in events]\n",
" \n",
" response = list(events[-1].values())[0][\"messages\"][0]\n",
" response = response.content\n",
" response = response.replace(\"FINAL ANSWER: \", \"\")\n",
" \n",
" return response\n",
"\n",
"\n",
"content = \"วิเคราะห์ร้านอาหารแถวลุมพินี เซ็นเตอร์ ลาดพร้าว\"\n",
"submitUserMessage(content)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|