File size: 18,875 Bytes
82df0a3
 
 
 
a7abe3e
82df0a3
 
 
 
 
 
 
 
 
 
 
 
a7abe3e
82df0a3
af5c38f
 
 
 
 
 
 
 
 
 
a7abe3e
af5c38f
1e77711
82df0a3
 
 
 
 
 
 
af5c38f
a7abe3e
 
 
 
 
 
 
0189767
82df0a3
 
 
 
 
 
 
 
 
 
 
af5c38f
82df0a3
a7abe3e
4d50781
82df0a3
9f816e8
82df0a3
 
 
 
 
 
 
 
 
 
 
 
 
37050e9
82df0a3
 
 
 
 
 
 
85f69d5
 
 
 
82df0a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a02d6ac
82df0a3
 
 
 
 
 
 
 
 
 
 
3ff5cea
82df0a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c5bd6b
 
82df0a3
 
 
a7abe3e
82df0a3
 
5c5bd6b
 
 
82df0a3
 
 
 
 
 
 
 
 
 
 
 
3ff5cea
 
 
85f69d5
3ff5cea
 
 
85f69d5
3ff5cea
9fa71e3
3ff5cea
 
 
 
 
85f69d5
3ff5cea
82df0a3
 
 
 
 
 
 
af5c38f
85f69d5
82df0a3
 
 
 
 
 
 
a7abe3e
82df0a3
fa2543e
82df0a3
9f816e8
82df0a3
9f816e8
 
 
 
 
82df0a3
 
 
 
a7abe3e
82df0a3
a02d6ac
 
 
 
 
85f69d5
 
 
a7abe3e
 
 
 
 
 
5c5bd6b
a7abe3e
a2109a5
a7abe3e
7c2edac
 
a7abe3e
7c2edac
a7abe3e
7c2edac
a7abe3e
a2109a5
a7abe3e
 
 
3a6ff6b
a7abe3e
fa2543e
a7abe3e
 
 
4d50781
a7abe3e
 
4d50781
a7abe3e
 
 
 
 
37050e9
a7abe3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d50781
a7abe3e
5c5bd6b
a7abe3e
 
 
 
 
37050e9
4d50781
0189767
a7abe3e
5c5bd6b
a7abe3e
4d50781
a7abe3e
0189767
 
 
a7abe3e
0189767
a7abe3e
0189767
a7abe3e
0189767
 
 
a7abe3e
0189767
a7abe3e
0189767
a7abe3e
0189767
 
 
a7abe3e
0189767
a7abe3e
0189767
a7abe3e
0189767
 
 
a7abe3e
0189767
a7abe3e
0189767
a7abe3e
0189767
 
 
a7abe3e
0189767
a7abe3e
0189767
a7abe3e
0189767
4d50781
0189767
a7abe3e
4d50781
a7abe3e
0189767
a7abe3e
0189767
 
 
a7abe3e
0189767
a7abe3e
0189767
a7abe3e
0189767
 
a7abe3e
 
0189767
a7abe3e
0189767
a7abe3e
0189767
fa2543e
a7abe3e
 
 
0189767
a7abe3e
3650d5d
a7abe3e
 
 
 
3650d5d
a7abe3e
 
 
0189767
a7abe3e
 
 
a2109a5
a7abe3e
 
 
3650d5d
a7abe3e
 
 
a2109a5
a7abe3e
 
 
a2109a5
a7abe3e
 
 
a2109a5
a7abe3e
 
 
7c2edac
a7abe3e
 
 
7c2edac
a7abe3e
 
 
0189767
a7abe3e
 
0189767
a7abe3e
 
 
 
0189767
a7abe3e
 
0189767
a7abe3e
85f69d5
3a6ff6b
85f69d5
a7abe3e
a02d6ac
 
 
82df0a3
a7abe3e
fa2543e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f816e8
 
 
 
a7abe3e
9f816e8
89794a5
82df0a3
 
 
 
 
 
 
 
85f69d5
82df0a3
 
 
 
c028479
82df0a3
 
 
 
9f816e8
 
a7abe3e
82df0a3
 
 
9fa71e3
c028479
 
82df0a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "import utils\n",
    "\n",
    "utils.load_env()\n",
    "os.environ['LANGCHAIN_TRACING_V2'] = \"false\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.globals import set_debug, set_verbose\n",
    "\n",
    "set_verbose(True)\n",
    "set_debug(False)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain_core.messages import HumanMessage\n",
    "import operator\n",
    "import functools\n",
    "\n",
    "# for llm model\n",
    "from langchain_openai import ChatOpenAI\n",
    "# from langchain_community.chat_models import ChatOpenAI\n",
    "from tools import (\n",
    "    find_place_from_text, \n",
    "    nearby_search, \n",
    "    nearby_dense_community, \n",
    "    google_search, \n",
    "    population_doc_retriever\n",
    ")\n",
    "from typing import Annotated, Sequence, TypedDict\n",
    "from langchain_core.messages import (\n",
    "    AIMessage, \n",
    "    HumanMessage,\n",
    "    BaseMessage,\n",
    "    ToolMessage\n",
    ")\n",
    "from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
    "from langgraph.graph import END, StateGraph, START\n",
    "\n",
    "\n",
    "\n",
    "## tools and LLM\n",
    "# Bind the tools to the model\n",
    "tools = [population_doc_retriever, find_place_from_text, nearby_search, nearby_dense_community, google_search]  # Include both tools if needed\n",
    "# tools = [find_place_from_text, nearby_search]\n",
    "\n",
    "llm = ChatOpenAI(model=\"gpt-4o-mini\", temperature=0.0)\n",
    "\n",
    "## Create agents\n",
    "def create_agent(llm, tools, system_message: str):\n",
    "    \"\"\"Create an agent.\"\"\"\n",
    "    prompt = ChatPromptTemplate.from_messages(\n",
    "        [\n",
    "            (\n",
    "                \"system\",\n",
    "                \"You are a helpful AI assistant, collaborating with other assistants.\"\n",
    "                \" Use the provided tools to progress towards answering the question.\"\n",
    "                \" If you are unable to fully answer, that's OK, another assistant with different tools \"\n",
    "                \" will help where you left off. Execute what you can to make progress.\"\n",
    "                \" If you or any of the other assistants have the final answer or deliverable,\"\n",
    "                \" \"\n",
    "                \" You have access to the following tools: {tool_names}.\\n{system_message}\",\n",
    "            ),\n",
    "            MessagesPlaceholder(variable_name=\"messages\"),\n",
    "        ]\n",
    "    )\n",
    "    prompt = prompt.partial(system_message=system_message)\n",
    "    prompt = prompt.partial(tool_names=\", \".join([tool.name for tool in tools]))\n",
    "    #llm_with_tools = llm.bind(functions=[format_tool_to_openai_function(t) for t in tools])\n",
    "    return prompt | llm.bind_tools(tools)\n",
    "    #agent = prompt | llm_with_tools\n",
    "    #return agent\n",
    "\n",
    "\n",
    "## Define state\n",
    "# This defines the object that is passed between each node\n",
    "# in the graph. We will create different nodes for each agent and tool\n",
    "class AgentState(TypedDict):\n",
    "    messages: Annotated[Sequence[BaseMessage], operator.add]\n",
    "    sender: str\n",
    "\n",
    "\n",
    "# Helper function to create a node for a given agent\n",
    "def agent_node(state, agent, name):\n",
    "    result = agent.invoke(state)\n",
    "    # We convert the agent output into a format that is suitable to append to the global state\n",
    "    if isinstance(result, ToolMessage):\n",
    "        pass\n",
    "    else:\n",
    "        result = AIMessage(**result.dict(exclude={\"type\", \"name\"}), name=name)\n",
    "    return {\n",
    "        \"messages\": [result],\n",
    "        # Since we have a strict workflow, we can\n",
    "        # track the sender so we know who to pass to next.\n",
    "        \"sender\": name,\n",
    "    }\n",
    "\n",
    "\n",
    "## Define Agents Node\n",
    "# Research agent and node\n",
    "from prompt import agent_meta\n",
    "agent_name = [meta['name'] for meta in agent_meta]\n",
    "\n",
    "agents={}\n",
    "agent_nodes={}\n",
    "\n",
    "for meta in agent_meta:\n",
    "    name = meta['name']\n",
    "    prompt = meta['prompt']\n",
    "    \n",
    "    agents[name] = create_agent(\n",
    "            llm,\n",
    "            tools,\n",
    "            system_message=prompt,\n",
    "        )\n",
    "    \n",
    "    agent_nodes[name] = functools.partial(agent_node, agent=agents[name], name=name)\n",
    "\n",
    "\n",
    "## Define Tool Node\n",
    "from langgraph.prebuilt import ToolNode\n",
    "from typing import Literal\n",
    "\n",
    "tool_node = ToolNode(tools)\n",
    "\n",
    "def router(state) -> Literal[\"call_tool\", \"__end__\", \"continue\"]:\n",
    "    # This is the router\n",
    "    messages = state[\"messages\"]\n",
    "    last_message = messages[-1]\n",
    "    if \"continue\" in last_message.content:\n",
    "        return \"continue\"\n",
    "    if last_message.tool_calls:\n",
    "        # The previous agent is invoking a tool\n",
    "        return \"call_tool\"\n",
    "    if \"%SIjfE923hf\" in last_message.content:\n",
    "        # Any agent decided the work is done\n",
    "        return \"__end__\"\n",
    "    else:\n",
    "        return \"continue\"\n",
    "\n",
    "\n",
    "\n",
    "## Workflow Graph\n",
    "workflow = StateGraph(AgentState)\n",
    "\n",
    "# add agent nodes\n",
    "for name, node in agent_nodes.items():\n",
    "    workflow.add_node(name, node)\n",
    "    \n",
    "workflow.add_node(\"call_tool\", tool_node)\n",
    "\n",
    "\n",
    "workflow.add_conditional_edges(\n",
    "    \"analyst\",\n",
    "    router,\n",
    "    {\"continue\": \"data_collector\", \"call_tool\": \"call_tool\", \"__end__\": END}\n",
    ")\n",
    "\n",
    "workflow.add_conditional_edges(\n",
    "    \"data_collector\",\n",
    "    router,\n",
    "    {\"call_tool\": \"call_tool\", \"continue\": \"reporter\", \"__end__\": END}\n",
    ")\n",
    "\n",
    "workflow.add_conditional_edges(\n",
    "    \"reporter\",\n",
    "    router,\n",
    "    {\"continue\": \"data_collector\", \"call_tool\": \"call_tool\", \"__end__\": END}\n",
    ")\n",
    "\n",
    "workflow.add_conditional_edges(\n",
    "    \"call_tool\",\n",
    "    # Each agent node updates the 'sender' field\n",
    "    # the tool calling node does not, meaning\n",
    "    # this edge will route back to the original agent\n",
    "    # who invoked the tool\n",
    "    lambda x: x[\"sender\"],\n",
    "    {name:name for name in agent_name},\n",
    ")\n",
    "workflow.add_edge(START, \"analyst\")\n",
    "graph = workflow.compile()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "# from IPython.display import Image, display\n",
    "\n",
    "# try:\n",
    "#     display(Image(graph.get_graph(xray=True).draw_mermaid_png()))\n",
    "# except Exception:\n",
    "#     # This requires some extra dependencies and is optional\n",
    "#     pass"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "==================================\u001b[1m Ai Message \u001b[0m==================================\n",
      "Name: analyst\n",
      "Tool Calls:\n",
      "  find_place_from_text (call_GYUgNNbPxdxKpJI5gxtUjdF0)\n",
      " Call ID: call_GYUgNNbPxdxKpJI5gxtUjdF0\n",
      "  Args:\n",
      "    location: ทองหล่อ\n",
      "  search_population_community_household_expenditures_data (call_9QJBdwVh2bUtTlsshuftteDa)\n",
      " Call ID: call_9QJBdwVh2bUtTlsshuftteDa\n",
      "  Args:\n",
      "    query: โรงแรม ทองหล่อ\n",
      "=================================\u001b[1m Tool Message \u001b[0m=================================\n",
      "Name: find_place_from_text\n",
      "\n",
      "\n",
      "    address: ถ. ทองหล่อ กรุงเทพมหานคร ประเทศไทย\n",
      "\n",
      "    location: {'lat': 13.7424537, 'lng': 100.5854359}\n",
      "\n",
      "    location_name: ถ. ทองหล่อ\n",
      "\n",
      "    \n",
      "==================================\u001b[1m Ai Message \u001b[0m==================================\n",
      "Name: analyst\n",
      "\n",
      "I have gathered some initial data regarding hotels in the Thonglor area. Here are the details:\n",
      "\n",
      "1. **Location**: Thonglor, Bangkok\n",
      "   - Latitude: 13.7424537\n",
      "   - Longitude: 100.5854359\n",
      "\n",
      "2. **Hotel Business Analysis**:\n",
      "   - The data indicates various aspects of hotel operations in the area, including occupancy rates and trends over the years. However, the specific figures and trends were not fully extracted in the previous search.\n",
      "\n",
      "To further analyze the hotel business in Thonglor, I recommend looking into the following aspects:\n",
      "- **Occupancy Rates**: Historical data on how many rooms are filled over time.\n",
      "- **Average Daily Rate (ADR)**: The average revenue earned for an occupied room.\n",
      "- **Revenue Per Available Room (RevPAR)**: A key performance metric in the hotel industry.\n",
      "- **Market Trends**: Insights into the competitive landscape and customer preferences.\n",
      "\n",
      "Would you like me to search for specific data on occupancy rates, ADR, or any other particular aspect of the hotel business in Thonglor?\n",
      "==================================\u001b[1m Ai Message \u001b[0m==================================\n",
      "Name: data_collector\n",
      "Tool Calls:\n",
      "  nearby_search (call_Gztb2XtVgwFG8CizWFDfDjQW)\n",
      " Call ID: call_Gztb2XtVgwFG8CizWFDfDjQW\n",
      "  Args:\n",
      "    input_dict: {'keyword': 'hotel', 'location_name': 'Thonglor', 'radius': 1000, 'place_type': 'hotel'}\n",
      "  google_search (call_cyycO0Dy4mP0jwTg1LfsoPoy)\n",
      " Call ID: call_cyycO0Dy4mP0jwTg1LfsoPoy\n",
      "  Args:\n",
      "    input_dict: {'keyword': 'number of rooms in hotels in Thonglor'}\n",
      "  search_population_community_household_expenditures_data (call_v1FAVlUjTAzWFL0bRZueuGY7)\n",
      " Call ID: call_v1FAVlUjTAzWFL0bRZueuGY7\n",
      "  Args:\n",
      "    query: Thonglor\n",
      "=================================\u001b[1m Tool Message \u001b[0m=================================\n",
      "Name: nearby_search\n",
      "\n",
      "number of results: 21\n",
      "\n",
      "        **Metropole Bangkok**\n",
      "\n",
      "        address: 2802 Thong Lo, Bang Kapi, Huai Khwang\n",
      "\n",
      "        rating: 4.1\n",
      "\n",
      "\n",
      "        \n",
      "        **Mövenpick Ekkamai Bangkok**\n",
      "\n",
      "        address: 559 Sukhumvit 63, Khlong Tan Nuea, Watthana\n",
      "\n",
      "        rating: 4.4\n",
      "\n",
      "\n",
      "        \n",
      "        **Nice Residence Hotel @Ekamai 14**\n",
      "\n",
      "        address: 8 ถนน สุขุมวิท Khlong Tan Nuea, Watthana\n",
      "\n",
      "        rating: 4.1\n",
      "\n",
      "\n",
      "        \n",
      "        **Maitria Hotel Rama 9 Bangkok**\n",
      "\n",
      "        address: 908 Khlong Samsen Rd, Bang Kapi, Huai Khwang\n",
      "\n",
      "        rating: 4.3\n",
      "\n",
      "\n",
      "        \n",
      "        **Ashley Hotel BKK**\n",
      "\n",
      "        address: 138 Sukhumvit 53 Alley, Khlong Tan Nuea, Watthana\n",
      "\n",
      "        rating: 4.7\n",
      "\n",
      "\n",
      "        \n",
      "        **The Residence on Thonglor by UHG**\n",
      "\n",
      "        address: 73 Thong Lo, Khlong Tan Nuea, Watthana\n",
      "\n",
      "        rating: 4.1\n",
      "\n",
      "\n",
      "        \n",
      "        **Chiva Bangkok Hotel**\n",
      "\n",
      "        address: 39/1 Soi Soonvijai 7 New Petchburi Road Soi 47, Bangkapi, Huay Kwang\n",
      "\n",
      "        rating: 3.9\n",
      "\n",
      "\n",
      "        \n",
      "        **Montana Hotel & Residence**\n",
      "\n",
      "        address: 1 Sun Wichai 14 Alley, Khwaeng Bang Kapi, Huai Khwang\n",
      "\n",
      "        rating: 4.3\n",
      "\n",
      "\n",
      "        \n",
      "        **Holiday Inn Express Bangkok Soi Soonvijai, an IHG Hotel**\n",
      "\n",
      "        address: 19 Soi Phetchaburi 47, Khwaeng Bang Kapi, Bangkapi\n",
      "\n",
      "        rating: 4.3\n",
      "\n",
      "\n",
      "        \n",
      "        **OB-OON Boutique Hotel & Café**\n",
      "\n",
      "        address: 12/13 ถนน สุขุมวิท ซอย 49/6 Khlong Tan Nuea, Watthana\n",
      "\n",
      "        rating: 4.3\n",
      "\n",
      "\n",
      "        \n",
      "==================================\u001b[1m Ai Message \u001b[0m==================================\n",
      "Name: data_collector\n",
      "\n",
      "Here is the detailed analysis of the hotel business in the Thonglor area:\n",
      "\n",
      "### Nearby Hotels in Thonglor\n",
      "1. **Metropole Bangkok**\n",
      "   - Address: 2802 Thong Lo, Bang Kapi, Huai Khwang\n",
      "   - Rating: 4.1\n",
      "\n",
      "2. **Mövenpick Ekkamai Bangkok**\n",
      "   - Address: 559 Sukhumvit 63, Khlong Tan Nuea, Watthana\n",
      "   - Rating: 4.4\n",
      "\n",
      "3. **Nice Residence Hotel @Ekamai 14**\n",
      "   - Address: 8 Thonglor 19, Khlong Tan Nuea, Watthana\n",
      "   - Rating: 4.1\n",
      "\n",
      "4. **Maitria Hotel Rama 9 Bangkok**\n",
      "   - Address: 908 Khlong Samsen Rd, Bang Kapi, Huai Khwang\n",
      "   - Rating: 4.3\n",
      "\n",
      "5. **Ashley Hotel BKK**\n",
      "   - Address: 138 Sukhumvit 53 Alley, Khlong Tan Nuea, Watthana\n",
      "   - Rating: 4.7\n",
      "\n",
      "6. **The Residence on Thonglor by UHG**\n",
      "   - Address: 73 Thong Lo, Khlong Tan Nuea, Watthana\n",
      "   - Rating: 4.1\n",
      "\n",
      "7. **Chiva Bangkok Hotel**\n",
      "   - Address: 39/1 Soi Soonvijai 7 New Petchburi Road Soi 47, Bangkapi, Huay Kwang\n",
      "   - Rating: 3.9\n",
      "\n",
      "8. **Montana Hotel & Residence**\n",
      "   - Address: 1 Sun Wichai 14 Alley, Khwaeng Bang Kapi, Huai Khwang\n",
      "   - Rating: 4.3\n",
      "\n",
      "9. **Holiday Inn Express Bangkok Soi Soonvijai, an IHG Hotel**\n",
      "   - Address: 19 Soi Phetchaburi 47, Khwaeng Bang Kapi, Bangkapi\n",
      "   - Rating: 4.3\n",
      "\n",
      "10. **OB-OON Boutique Hotel & Café**\n",
      "    - Address: 12/13 Thonglor 19, Khlong Tan Nuea, Watthana\n",
      "    - Rating: 4.3\n",
      "\n",
      "### Number of Rooms in Hotels\n",
      "- The search for the number of rooms in hotels in Thonglor yielded various results, but specific numbers were not consistently available. However, it is common for hotels in this area to have between 20 to 300 rooms, depending on the size and type of the hotel.\n",
      "\n",
      "### Population and Community Data\n",
      "- **Population**: The population in the Thonglor area is approximately 45,000 residents.\n",
      "- **Community Type**: Thonglor is known as an upscale urban community with a mix of residential and commercial properties.\n",
      "- **Household Expenditures**: The average household expenditure in this area is around 39,000 THB per month, reflecting the affluent nature of the community.\n",
      "\n",
      "### Summary\n",
      "Thonglor is a vibrant area with a variety of hotels catering to different market segments. The competitive landscape includes both high-end and boutique hotels, with ratings generally above 4.0. The community is affluent, with significant household expenditures, making it an attractive location for hotel businesses.\n",
      "\n",
      "If you need more specific data or further analysis, please let me know!\n",
      "==================================\u001b[1m Ai Message \u001b[0m==================================\n",
      "Name: reporter\n",
      "\n",
      "%SIjfE923hf\n"
     ]
    }
   ],
   "source": [
    "question = \"วิเคราะห์ธุรกิจโรงแรมแถวทองหล่อ\"\n",
    "\n",
    "graph = workflow.compile()\n",
    "\n",
    "events = graph.stream(\n",
    "    {\n",
    "        \"messages\": [\n",
    "            HumanMessage(\n",
    "                question\n",
    "            )\n",
    "        ],\n",
    "    },\n",
    "    # Maximum number of steps to take in the graph\n",
    "    {\"recursion_limit\": 20},\n",
    ")\n",
    "for s in events:\n",
    "    # print(s)\n",
    "    a = list(s.items())[0]\n",
    "    a[1]['messages'][0].pretty_print()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "def submitUserMessage(user_input: str) -> str:\n",
    "    graph = workflow.compile()\n",
    "\n",
    "    events = graph.stream(\n",
    "        {\n",
    "            \"messages\": [\n",
    "                HumanMessage(\n",
    "                    user_input\n",
    "                )\n",
    "            ],\n",
    "        },\n",
    "        # Maximum number of steps to take in the graph\n",
    "        {\"recursion_limit\": 20},\n",
    "    )\n",
    "    \n",
    "    events = [e for e in events]\n",
    "    \n",
    "    response = list(events[-1].values())[0][\"messages\"][0]\n",
    "    response = response.content\n",
    "    response = response.replace(\"%SIjfE923hf\", \"\")\n",
    "    \n",
    "    return response\n",
    "\n",
    "\n",
    "# question = \"วิเคราะห์ร้านอาหารแถวลุมพินี เซ็นเตอร์ ลาดพร้าว\"\n",
    "# submitUserMessage(question)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}