DylanonWic's picture
Upload 11 files
115169a verified
raw
history blame
2.38 kB
import os
import utils
utils.load_env()
# os.environ['LANGCHAIN_TRACING_V2'] = "true"
from typing import Literal
from langchain_core.messages import HumanMessage
from langchain_openai import ChatOpenAI
from langgraph.checkpoint.memory import MemorySaver
from langgraph.graph import END, StateGraph, MessagesState
import tools
# define tools node.
tool_node = tools.tool_node
# load models.
model = ChatOpenAI(model="gpt-4o-mini")
# Define the function that determines whether to continue or not
def should_continue(state: MessagesState) -> Literal["tools", END]:
messages = state['messages']
last_message = messages[-1]
# If the LLM makes a tool call, then we route to the "tools" node
if last_message.tool_calls:
return "tools"
# Otherwise, we stop (reply to the user)
return END
# Define the function that calls the model
def call_model(state: MessagesState):
messages = state['messages']
response = model.invoke(messages)
# We return a list, because this will get added to the existing list
return {"messages": [response]}
# Define a new graph
workflow = StateGraph(MessagesState)
# Define the two nodes we will cycle between
workflow.add_node("agent", call_model)
workflow.add_node("tools", tool_node)
# Set the entrypoint as `agent`
workflow.set_entry_point("agent")
# We now add a conditional edge
workflow.add_conditional_edges(
# First, we define the start node. We use `agent`.
# This means these are the edges taken after the `agent` node is called.
"agent",
# Next, we pass in the function that will determine which node is called next.
should_continue,
)
# We now add a normal edge from `tools` to `agent`.
# This means that after `tools` is called, `agent` node is called next.
workflow.add_edge("tools", 'agent')
# Initialize memory to persist state between graph runs
checkpointer = MemorySaver()
# Finally, we compile it!
# This compiles it into a LangChain Runnable,
# meaning you can use it as you would any other runnable.
# Note that we're (optionally) passing the memory when compiling the graph
app = workflow.compile(checkpointer=checkpointer)
def submitUserMessage(message:str):
final_state = app.invoke(
{"messages": [HumanMessage(content=message)]},
config={"configurable": {"thread_id": 42}}
)
return final_state["messages"][-1].content