DylanonWic's picture
Upload 17 files
89578da verified
raw
history blame
6.26 kB
import gplace
from typing import TypedDict, Optional
from langchain_google_community import GoogleSearchAPIWrapper
import utils
## Document vector store for context
from langchain_chroma import Chroma
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import CSVLoader
from langchain_openai import OpenAIEmbeddings
import glob
utils.load_env()
search = GoogleSearchAPIWrapper()
class NearbySearchInput(TypedDict):
keyword: str
location_name: str
radius: int
place_type: Optional[str]
class NearbyDenseCommunityInput(TypedDict):
location_name: str
radius: int
class GoogleSearchInput(TypedDict):
keyword: str
# %%
def find_place_from_text(location:str):
"""Finds a place and related data from the query text"""
result = gplace.find_place_from_text(location)
r = result['candidates'][0]
return f"""
address: {r['formatted_address']}\n
location: {r['geometry']['location']}\n
location_name: {r['name']}\n
"""
# return f"""
# address: {r['formatted_address']}\n
# location: {r['geometry']['location']}\n
# location_name: {r['name']}\n
# """
# def nearby_search(keyword:str, location:str, radius=2000, place_type=None):
# """Searches for many places nearby the location based on a keyword. using keyword like \"coffee shop\", \"restaurants\". radius is the range to search from the location"""
# location = gplace.find_location(location, radius=radius)
# result = gplace.nearby_search(keyword, location, radius)
# strout = ""
# for r in result:
# strout = strout + f"""
# address: {r['vicinity']}\n
# location: {r['geometry']['location']}\n
# name: {r['name']}\n
# opening hours: {r['opening_hours']}\n
# rating: {r['rating']}\n
# plus code: {r['plus_code']['global_code']}\n\n
# """
# return strout
def nearby_search(input_dict: NearbySearchInput):
"""Searches for many places nearby the location based on a keyword. using keyword like \"coffee shop\", \"restaurants\". radius is the range to search from the location."""
max_results = 10
keyword = input_dict['keyword']
location = input_dict['location_name']
radius = input_dict.get('radius', 2000)
place_type = input_dict.get('place_type', None)
# Call the internal function to find location
location_coords = gplace.find_location(location, radius=radius)
result = gplace.nearby_search(keyword, location_coords, radius)
number_results = len(result)
strout = "number of results more than {}\n".format(number_results) if number_results==60 else "number of results: {}\n".format(number_results)
for r in result[:max_results]:
# Use .get() to handle missing keys
address = r.get('vicinity', 'N/A')
location_info = r.get('geometry', {}).get('location', 'N/A')
name = r.get('name', 'N/A')
opening_hours = r.get('opening_hours', 'N/A')
rating = r.get('rating', 'N/A')
plus_code = r.get('plus_code', {}).get('global_code', 'N/A')
# strout += f"""
# address: {address}\n
# location: {location_info}\n
# lacation_name: {name}\n
# opening hours: {opening_hours}\n
# rating: {rating}\n
# plus code: {plus_code}\n\n
# """
strout += f"""
**{name}**\n
address: {address}\n
rating: {rating}\n\n
"""
return strout
def nearby_dense_community(input_dict: NearbyDenseCommunityInput) -> str:
""" getting nearby dense community such as (community mall, hotel, school, etc), by location name, radius(in meters)
return list of location community nearby, name, community type.
"""
location = input_dict['location_name']
radius = input_dict['radius']
location_coords = gplace.find_location(location, radius=radius)
result = gplace.nearby_dense_community(location_coords, radius)
strout = ""
for r in result:
# Use .get() to handle missing keys
address = r.get('vicinity', 'N/A')
location_types = r.get('types', 'N/A')
name = r.get('name', 'N/A')
opening_hours = r.get('opening_hours', 'N/A')
rating = r.get('rating', 'N/A')
plus_code = r.get('plus_code', {}).get('global_code', 'N/A')
strout += f"""
name: {name}\n
types: {location_types}\n
"""
return strout
def google_search(input_dict: GoogleSearchInput):
"""Search Google for a keyword."""
return search.run(input_dict['keyword'])
## Document csv
def get_documents(file_pattern="document/*.csv"):
file_paths = tuple(glob.glob(file_pattern))
all_docs = []
for file_path in file_paths:
loader = CSVLoader(file_path=file_path)
docs = loader.load()
all_docs.extend(docs) # Add the documents to the list
return all_docs
def get_retriver_from_docs(docs):
# Split text into chunks separated.
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
splits = text_splitter.split_documents(docs)
# Text Vectorization.
vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings())
# Retrieve and generate using the relevant snippets of the blog.
retriever = vectorstore.as_retriever()
return retriever
from langchain.tools.retriever import create_retriever_tool
from langchain_core.tools import tool
from langchain_core.tools import Tool
docs = get_documents()
retriever = get_retriver_from_docs(docs)
population_doc_retriever = create_retriever_tool(
retriever,
"search_population_community_household_expenditures_data",
"Use this tool to retrieve information about population, community and household expenditures. by searching distinct or province"
)
# google_search = Tool(
# name="google_search",
# description="Search Google for recent results.",
# func=search.run,
# )
google_search = tool(google_search)
find_place_from_text = tool(find_place_from_text)
nearby_search = tool(nearby_search)
nearby_dense_community = tool(nearby_dense_community)