import gplace from typing import TypedDict, Optional from langchain_google_community import GoogleSearchAPIWrapper import utils ## Document vector store for context from langchain_chroma import Chroma from langchain_text_splitters import RecursiveCharacterTextSplitter from langchain_community.document_loaders import CSVLoader from langchain_openai import OpenAIEmbeddings import glob utils.load_env() search = GoogleSearchAPIWrapper() class NearbySearchInput(TypedDict): keyword: str location_name: str radius: int place_type: Optional[str] class NearbyDenseCommunityInput(TypedDict): location_name: str radius: int class GoogleSearchInput(TypedDict): keyword: str # %% def find_place_from_text(location:str): """Finds a place and related data from the query text""" result = gplace.find_place_from_text(location) r = result['candidates'][0] return f""" address: {r['formatted_address']}\n location: {r['geometry']['location']}\n location_name: {r['name']}\n """ # return f""" # address: {r['formatted_address']}\n # location: {r['geometry']['location']}\n # location_name: {r['name']}\n # """ # def nearby_search(keyword:str, location:str, radius=2000, place_type=None): # """Searches for many places nearby the location based on a keyword. using keyword like \"coffee shop\", \"restaurants\". radius is the range to search from the location""" # location = gplace.find_location(location, radius=radius) # result = gplace.nearby_search(keyword, location, radius) # strout = "" # for r in result: # strout = strout + f""" # address: {r['vicinity']}\n # location: {r['geometry']['location']}\n # name: {r['name']}\n # opening hours: {r['opening_hours']}\n # rating: {r['rating']}\n # plus code: {r['plus_code']['global_code']}\n\n # """ # return strout def nearby_search(input_dict: NearbySearchInput): """Searches for many places nearby the location based on a keyword. using keyword like \"coffee shop\", \"restaurants\". radius is the range to search from the location.""" max_results = 10 keyword = input_dict['keyword'] location = input_dict['location_name'] radius = input_dict.get('radius', 2000) place_type = input_dict.get('place_type', None) # Call the internal function to find location location_coords = gplace.find_location(location, radius=radius) result = gplace.nearby_search(keyword, location_coords, radius) number_results = len(result) strout = "number of results more than {}\n".format(number_results) if number_results==60 else "number of results: {}\n".format(number_results) for r in result[:max_results]: # Use .get() to handle missing keys address = r.get('vicinity', 'N/A') location_info = r.get('geometry', {}).get('location', 'N/A') name = r.get('name', 'N/A') opening_hours = r.get('opening_hours', 'N/A') rating = r.get('rating', 'N/A') plus_code = r.get('plus_code', {}).get('global_code', 'N/A') # strout += f""" # address: {address}\n # location: {location_info}\n # lacation_name: {name}\n # opening hours: {opening_hours}\n # rating: {rating}\n # plus code: {plus_code}\n\n # """ strout += f""" **{name}**\n address: {address}\n rating: {rating}\n\n """ return strout def nearby_dense_community(input_dict: NearbyDenseCommunityInput) -> str: """ getting nearby dense community such as (community mall, hotel, school, etc), by location name, radius(in meters) return list of location community nearby, name, community type. """ location = input_dict['location_name'] radius = input_dict['radius'] location_coords = gplace.find_location(location, radius=radius) result = gplace.nearby_dense_community(location_coords, radius) strout = "" for r in result: # Use .get() to handle missing keys address = r.get('vicinity', 'N/A') location_types = r.get('types', 'N/A') name = r.get('name', 'N/A') opening_hours = r.get('opening_hours', 'N/A') rating = r.get('rating', 'N/A') plus_code = r.get('plus_code', {}).get('global_code', 'N/A') strout += f""" name: {name}\n types: {location_types}\n """ return strout def google_search(input_dict: GoogleSearchInput): """Search Google for recent results.""" return search.run(input_dict['keyword']) ## Document csv def get_documents(file_pattern="document/*.csv"): file_paths = tuple(glob.glob(file_pattern)) all_docs = [] for file_path in file_paths: loader = CSVLoader(file_path=file_path) docs = loader.load() all_docs.extend(docs) # Add the documents to the list return all_docs def get_retriver_from_docs(docs): # Split text into chunks separated. text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100) splits = text_splitter.split_documents(docs) # Text Vectorization. vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings()) # Retrieve and generate using the relevant snippets of the blog. retriever = vectorstore.as_retriever() return retriever from langchain.tools.retriever import create_retriever_tool from langchain_core.tools import tool docs = get_documents() retriever = get_retriver_from_docs(docs) population_doc_retriever = create_retriever_tool( retriever, "search_population_community_household_expenditures_data", "Use this tool to retrieve information about population, community and household expenditures. by searching distinct or province" ) google_search = tool(google_search) find_place_from_text = tool(find_place_from_text) nearby_search = tool(nearby_search) nearby_dense_community = tool(nearby_dense_community)