File size: 3,713 Bytes
b31b8df
 
 
 
 
 
00340e8
b31b8df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80bcd83
85da704
b31b8df
85da704
b31b8df
85da704
 
b31b8df
 
 
 
 
 
a9ba8bb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import streamlit as st
import pandas as pd
import lightgbm as lgb
import pickle

# Load the trained LightGBM model
with open('lightgbm_model.pkl', 'rb') as model_file:
    model = pickle.load(model_file)

# Define mappings
workclass_map = {
    'Private': 1,
    'State-gov': 2,
    'Federal-gov': 3,
    'Self-emp-not-inc': 4,
    'Self-emp-inc': 5,
    'Local-gov': 6,
    'Without-pay': 7,
    'Never-worked': 8,
    '?': 9
}

education_ranks = {
    'Preschool': 1,
    '1st-4th': 2,
    '5th-6th': 3,
    '7th-8th': 4,
    '9th': 5,
    '10th': 6,
    '11th': 7,
    '12th': 8,
    'HS-grad': 9,
    'Some-college': 10,
    'Assoc-voc': 11,
    'Assoc-acdm': 12,
    'Bachelors': 13,
    'Masters': 14,
    'Prof-school': 15,
    'Doctorate': 16
}

marital_map = {
    'Married-civ-spouse': 1,
    'Married-spouse-absent': 1,
    'Married-AF-spouse': 1,
    'Widowed': 2,
    'Divorced': 2,
    'Separated': 2,
    'Never-married': 2
}

occupation_map = {
    'Exec-managerial': 1,
    'Machine-op-inspct': 2,
    'Prof-specialty': 3,
    'Other-service': 4,
    'Adm-clerical': 5,
    'Craft-repair': 6,
    'Transport-moving': 7,
    'Handlers-cleaners': 8,
    'Sales': 9,
    'Farming-fishing': 10,
    'Tech-support': 11,
    'Protective-serv': 12,
    'Armed-Forces': 13,
    'Priv-house-serv': 14
}

relationship_map = {
    'Not-in-family': 1,
    'Unmarried': 2,
    'Own-child': 3,
    'Other-relative': 4,
    'Husband': 5,
    'Wife': 6
}

income_map = {
    '<=50K': 0,
    '>50K': 1
}

# Define the input fields for the user to provide data
def get_user_input():
    age = st.number_input('Age', min_value=0, max_value=120, value=30)
    workclass = st.selectbox('Workclass', list(workclass_map.keys()))
    fnlwgt = st.number_input('Fnlwgt', min_value=0, value=100000)
    education = st.selectbox('Education', list(education_ranks.keys()))
    education_num = st.number_input('Education Num', min_value=0, max_value=20, value=10)
    marital_status = st.selectbox('Marital Status', list(marital_map.keys()))
    occupation = st.selectbox('Occupation', list(occupation_map.keys()))
    relationship = st.selectbox('Relationship', list(relationship_map.keys()))
    capital_gain = st.number_input('Capital Gain', min_value=0, value=0)
    capital_loss = st.number_input('Capital Loss', min_value=0, value=0)
    hours_per_week = st.number_input('Hours Per Week', min_value=0, max_value=168, value=40)

    user_data = {
        'age': age,
        'workclass_rank': workclass_map[workclass],
        'fnlwgt': fnlwgt,
        'education_rank': education_ranks[education],
        'education.num': education_num,
        'marital_status_binary': marital_map[marital_status],
        'occupation_rank': occupation_map[occupation],
        'relationship_rank': relationship_map[relationship],
        'capital.gain': capital_gain,
        'capital.loss': capital_loss,
        'hours.per.week': hours_per_week
    }
    
    features = pd.DataFrame(user_data, index=[0])
    return features

# Main function to run the app
def main():
    st.title('Income Prediction App')
    st.write('This app predicts whether a person makes over $50K a year based on their demographics and work information.')

    user_input = get_user_input()
    
    st.subheader('User Input:')
    st.write(user_input)
    
    prediction_proba = model.predict(user_input)
  
    st.subheader('Prediction:')
    if prediction_proba[0] < 0.5:
        st.write('The model predicts: Income <= $50K')
    else:
        st.write('The model predicts: Income > $50K')

    st.subheader('Prediction Probability:')
    st.write(f'Probability of making over $50K: {prediction_proba[0]:.2f}')

if __name__ == '__main__':
    main()