Spaces:
Runtime error
Runtime error
File size: 22,615 Bytes
7734d5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 |
from collections import deque
import os
import cv2
import numpy as np
import torch
import torch.nn.functional as F
from torchsummary import summary
from core.mot.general import non_max_suppression_and_inds, non_max_suppression_jde, non_max_suppression, scale_coords
from core.mot.torch_utils import intersect_dicts
from models.mot.cstrack import Model
from mot_online import matching
from mot_online.kalman_filter import KalmanFilter
from mot_online.log import logger
from mot_online.utils import *
from mot_online.basetrack import BaseTrack, TrackState
class STrack(BaseTrack):
shared_kalman = KalmanFilter()
def __init__(self, tlwh, score, temp_feat, buffer_size=30):
# wait activate
self._tlwh = np.asarray(tlwh, dtype=np.float)
self.kalman_filter = None
self.mean, self.covariance = None, None
self.is_activated = False
self.score = score
self.tracklet_len = 0
self.smooth_feat = None
self.update_features(temp_feat)
self.features = deque([], maxlen=buffer_size)
self.alpha = 0.9
def update_features(self, feat):
feat /= np.linalg.norm(feat)
self.curr_feat = feat
if self.smooth_feat is None:
self.smooth_feat = feat
else:
self.smooth_feat = self.alpha * self.smooth_feat + (1 - self.alpha) * feat
self.features.append(feat)
self.smooth_feat /= np.linalg.norm(self.smooth_feat)
def predict(self):
mean_state = self.mean.copy()
if self.state != TrackState.Tracked:
mean_state[7] = 0
self.mean, self.covariance = self.kalman_filter.predict(mean_state, self.covariance)
@staticmethod
def multi_predict(stracks):
if len(stracks) > 0:
multi_mean = np.asarray([st.mean.copy() for st in stracks])
multi_covariance = np.asarray([st.covariance for st in stracks])
for i, st in enumerate(stracks):
if st.state != TrackState.Tracked:
multi_mean[i][7] = 0
multi_mean, multi_covariance = STrack.shared_kalman.multi_predict(multi_mean, multi_covariance)
for i, (mean, cov) in enumerate(zip(multi_mean, multi_covariance)):
stracks[i].mean = mean
stracks[i].covariance = cov
def activate(self, kalman_filter, frame_id):
"""Start a new tracklet"""
self.kalman_filter = kalman_filter
self.track_id = self.next_id()
self.mean, self.covariance = self.kalman_filter.initiate(self.tlwh_to_xyah(self._tlwh))
self.tracklet_len = 0
self.state = TrackState.Tracked
#self.is_activated = True
self.frame_id = frame_id
self.start_frame = frame_id
def re_activate(self, new_track, frame_id, new_id=False):
self.mean, self.covariance = self.kalman_filter.update(
self.mean, self.covariance, self.tlwh_to_xyah(new_track.tlwh)
)
self.update_features(new_track.curr_feat)
self.tracklet_len = 0
self.state = TrackState.Tracked
self.is_activated = True
self.frame_id = frame_id
if new_id:
self.track_id = self.next_id()
def update(self, new_track, frame_id, update_feature=True):
"""
Update a matched track
:type new_track: STrack
:type frame_id: int
:type update_feature: bool
:return:
"""
self.frame_id = frame_id
self.tracklet_len += 1
new_tlwh = new_track.tlwh
self.mean, self.covariance = self.kalman_filter.update(
self.mean, self.covariance, self.tlwh_to_xyah(new_tlwh))
self.state = TrackState.Tracked
self.is_activated = True
self.score = new_track.score
if update_feature:
self.update_features(new_track.curr_feat)
@property
# @jit(nopython=True)
def tlwh(self):
"""Get current position in bounding box format `(top left x, top left y,
width, height)`.
"""
if self.mean is None:
return self._tlwh.copy()
ret = self.mean[:4].copy()
ret[2] *= ret[3]
ret[:2] -= ret[2:] / 2
return ret
@property
# @jit(nopython=True)
def tlbr(self):
"""Convert bounding box to format `(min x, min y, max x, max y)`, i.e.,
`(top left, bottom right)`.
"""
ret = self.tlwh.copy()
ret[2:] += ret[:2]
return ret
@staticmethod
# @jit(nopython=True)
def tlwh_to_xyah(tlwh):
"""Convert bounding box to format `(center x, center y, aspect ratio,
height)`, where the aspect ratio is `width / height`.
"""
ret = np.asarray(tlwh).copy()
ret[:2] += ret[2:] / 2
ret[2] /= ret[3]
return ret
def to_xyah(self):
return self.tlwh_to_xyah(self.tlwh)
@staticmethod
# @jit(nopython=True)
def tlbr_to_tlwh(tlbr):
ret = np.asarray(tlbr).copy()
ret[2:] -= ret[:2]
return ret
@staticmethod
# @jit(nopython=True)
def tlwh_to_tlbr(tlwh):
ret = np.asarray(tlwh).copy()
ret[2:] += ret[:2]
return ret
def __repr__(self):
return 'OT_{}_({}-{})'.format(self.track_id, self.start_frame, self.end_frame)
class JDETracker(object):
def __init__(self, opt, frame_rate=30):
self.opt = opt
if int(opt.gpus[0]) >= 0:
opt.device = torch.device('cuda')
else:
opt.device = torch.device('cpu')
print('Creating model...')
ckpt = torch.load(opt.weights, map_location=opt.device) # load checkpoint
self.model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=1).to(opt.device) # create
exclude = ['anchor'] if opt.cfg else [] # exclude keys
if type(ckpt['model']).__name__ == "OrderedDict":
state_dict = ckpt['model']
else:
state_dict = ckpt['model'].float().state_dict() # to FP32
state_dict = intersect_dicts(state_dict, self.model.state_dict(), exclude=exclude) # intersect
self.model.load_state_dict(state_dict, strict=False) # load
self.model.cuda().eval()
total_params = sum(p.numel() for p in self.model.parameters())
print(f'{total_params:,} total parameters.')
self.tracked_stracks = [] # type: list[STrack]
self.lost_stracks = [] # type: list[STrack]
self.removed_stracks = [] # type: list[STrack]
self.frame_id = 0
self.det_thresh = opt.conf_thres
self.buffer_size = int(frame_rate / 30.0 * opt.track_buffer)
self.max_time_lost = self.buffer_size
self.mean = np.array(opt.mean, dtype=np.float32).reshape(1, 1, 3)
self.std = np.array(opt.std, dtype=np.float32).reshape(1, 1, 3)
self.kalman_filter = KalmanFilter()
self.low_thres = 0.2
self.high_thres = self.opt.conf_thres + 0.1
def update(self, im_blob, img0,seq_num, save_dir):
self.frame_id += 1
activated_starcks = []
refind_stracks = []
lost_stracks = []
removed_stracks = []
dets = []
''' Step 1: Network forward, get detections & embeddings'''
with torch.no_grad():
output = self.model(im_blob, augment=False)
pred, train_out = output[1]
pred = pred[pred[:, :, 4] > self.low_thres]
detections = []
if len(pred) > 0:
dets,x_inds,y_inds = non_max_suppression_and_inds(pred[:,:6].unsqueeze(0), 0.1, self.opt.nms_thres,method='cluster_diou')
if len(dets) != 0:
scale_coords(self.opt.img_size, dets[:, :4], img0.shape).round()
id_feature = output[0][0, y_inds, x_inds, :].cpu().numpy()
remain_inds = dets[:, 4] > self.opt.conf_thres
inds_low = dets[:, 4] > self.low_thres
inds_high = dets[:, 4] < self.opt.conf_thres
inds_second = np.logical_and(inds_low, inds_high)
dets_second = dets[inds_second]
if id_feature.shape[0] == 1:
id_feature_second = id_feature
else:
id_feature_second = id_feature[inds_second]
dets = dets[remain_inds]
id_feature = id_feature[remain_inds]
detections = [STrack(STrack.tlbr_to_tlwh(tlbrs[:4]), tlbrs[4], f, 30) for
(tlbrs, f) in zip(dets[:, :5], id_feature)]
else:
detections = []
dets_second = []
id_feature_second = []
''' Add newly detected tracklets to tracked_stracks'''
unconfirmed = []
tracked_stracks = [] # type: list[STrack]
for track in self.tracked_stracks:
if not track.is_activated:
unconfirmed.append(track)
else:
tracked_stracks.append(track)
''' Step 2: First association, with embedding'''
strack_pool = joint_stracks(tracked_stracks, self.lost_stracks)
# Predict the current location with KF
#for strack in strack_pool:
#strack.predict()
STrack.multi_predict(strack_pool)
dists = matching.embedding_distance(strack_pool, detections)
dists = matching.fuse_motion(self.kalman_filter, dists, strack_pool, detections)
#dists = matching.iou_distance(strack_pool, detections)
matches, u_track, u_detection = matching.linear_assignment(dists, thresh=0.4)
for itracked, idet in matches:
track = strack_pool[itracked]
det = detections[idet]
if track.state == TrackState.Tracked:
track.update(detections[idet], self.frame_id)
activated_starcks.append(track)
else:
track.re_activate(det, self.frame_id, new_id=False)
refind_stracks.append(track)
# vis
track_features, det_features, cost_matrix, cost_matrix_det, cost_matrix_track = [],[],[],[],[]
if self.opt.vis_state == 1 and self.frame_id % 20 == 0:
if len(dets) != 0:
for i in range(0, dets.shape[0]):
bbox = dets[i][0:4]
cv2.rectangle(img0, (int(bbox[0]), int(bbox[1])),(int(bbox[2]), int(bbox[3])),(0, 255, 0), 2)
track_features, det_features, cost_matrix, cost_matrix_det, cost_matrix_track = matching.vis_id_feature_A_distance(strack_pool, detections)
vis_feature(self.frame_id,seq_num,img0,track_features,
det_features, cost_matrix, cost_matrix_det, cost_matrix_track, max_num=5, out_path=save_dir)
''' Step 3: Second association, with IOU'''
detections = [detections[i] for i in u_detection]
r_tracked_stracks = [strack_pool[i] for i in u_track if strack_pool[i].state == TrackState.Tracked]
dists = matching.iou_distance(r_tracked_stracks, detections)
matches, u_track, u_detection = matching.linear_assignment(dists, thresh=0.5)
for itracked, idet in matches:
track = r_tracked_stracks[itracked]
det = detections[idet]
if track.state == TrackState.Tracked:
track.update(det, self.frame_id)
activated_starcks.append(track)
else:
track.re_activate(det, self.frame_id, new_id=False)
refind_stracks.append(track)
# association the untrack to the low score detections
if len(dets_second) > 0:
detections_second = [STrack(STrack.tlbr_to_tlwh(tlbrs[:4]), tlbrs[4], f, 30) for
(tlbrs, f) in zip(dets_second[:, :5], id_feature_second)]
else:
detections_second = []
second_tracked_stracks = [r_tracked_stracks[i] for i in u_track if r_tracked_stracks[i].state == TrackState.Tracked]
dists = matching.iou_distance(second_tracked_stracks, detections_second)
matches, u_track, u_detection_second = matching.linear_assignment(dists, thresh=0.4)
for itracked, idet in matches:
track = second_tracked_stracks[itracked]
det = detections_second[idet]
if track.state == TrackState.Tracked:
track.update(det, self.frame_id)
activated_starcks.append(track)
else:
track.re_activate(det, self.frame_id, new_id=False)
refind_stracks.append(track)
for it in u_track:
track = second_tracked_stracks[it]
if not track.state == TrackState.Lost:
track.mark_lost()
lost_stracks.append(track)
'''Deal with unconfirmed tracks, usually tracks with only one beginning frame'''
detections = [detections[i] for i in u_detection]
dists = matching.iou_distance(unconfirmed, detections)
matches, u_unconfirmed, u_detection = matching.linear_assignment(dists, thresh=0.7)
for itracked, idet in matches:
unconfirmed[itracked].update(detections[idet], self.frame_id)
activated_starcks.append(unconfirmed[itracked])
for it in u_unconfirmed:
track = unconfirmed[it]
track.mark_removed()
removed_stracks.append(track)
""" Step 4: Init new stracks"""
for inew in u_detection:
track = detections[inew]
if track.score < self.high_thres:
continue
track.activate(self.kalman_filter, self.frame_id)
activated_starcks.append(track)
""" Step 5: Update state"""
for track in self.lost_stracks:
if self.frame_id - track.end_frame > self.max_time_lost:
track.mark_removed()
removed_stracks.append(track)
# print('Ramained match {} s'.format(t4-t3))
self.tracked_stracks = [t for t in self.tracked_stracks if t.state == TrackState.Tracked]
self.tracked_stracks = joint_stracks(self.tracked_stracks, activated_starcks)
self.tracked_stracks = joint_stracks(self.tracked_stracks, refind_stracks)
self.lost_stracks = sub_stracks(self.lost_stracks, self.tracked_stracks)
self.lost_stracks.extend(lost_stracks)
self.lost_stracks = sub_stracks(self.lost_stracks, self.removed_stracks)
self.removed_stracks.extend(removed_stracks)
self.tracked_stracks, self.lost_stracks = remove_duplicate_stracks(self.tracked_stracks, self.lost_stracks)
# get scores of lost tracks
output_stracks = [track for track in self.tracked_stracks if track.is_activated]
logger.debug('===========Frame {}=========='.format(self.frame_id))
logger.debug('Activated: {}'.format([track.track_id for track in activated_starcks]))
logger.debug('Refind: {}'.format([track.track_id for track in refind_stracks]))
logger.debug('Lost: {}'.format([track.track_id for track in lost_stracks]))
logger.debug('Removed: {}'.format([track.track_id for track in removed_stracks]))
return output_stracks
def joint_stracks(tlista, tlistb):
exists = {}
res = []
for t in tlista:
exists[t.track_id] = 1
res.append(t)
for t in tlistb:
tid = t.track_id
if not exists.get(tid, 0):
exists[tid] = 1
res.append(t)
return res
def sub_stracks(tlista, tlistb):
stracks = {}
for t in tlista:
stracks[t.track_id] = t
for t in tlistb:
tid = t.track_id
if stracks.get(tid, 0):
del stracks[tid]
return list(stracks.values())
def remove_duplicate_stracks(stracksa, stracksb):
pdist = matching.iou_distance(stracksa, stracksb)
pairs = np.where(pdist < 0.15)
dupa, dupb = list(), list()
for p, q in zip(*pairs):
timep = stracksa[p].frame_id - stracksa[p].start_frame
timeq = stracksb[q].frame_id - stracksb[q].start_frame
if timep > timeq:
dupb.append(q)
else:
dupa.append(p)
resa = [t for i, t in enumerate(stracksa) if not i in dupa]
resb = [t for i, t in enumerate(stracksb) if not i in dupb]
return resa, resb
def vis_feature(frame_id,seq_num,img,track_features, det_features, cost_matrix, cost_matrix_det, cost_matrix_track,max_num=5, out_path='/home/XX/'):
num_zero = ["0000","000","00","0"]
img = cv2.resize(img, (778, 435))
if len(det_features) != 0:
max_f = det_features.max()
min_f = det_features.min()
det_features = np.round((det_features - min_f) / (max_f - min_f) * 255)
det_features = det_features.astype(np.uint8)
d_F_M = []
cutpff_line = [40]*512
for d_f in det_features:
for row in range(45):
d_F_M += [[40]*3+d_f.tolist()+[40]*3]
for row in range(3):
d_F_M += [[40]*3+cutpff_line+[40]*3]
d_F_M = np.array(d_F_M)
d_F_M = d_F_M.astype(np.uint8)
det_features_img = cv2.applyColorMap(d_F_M, cv2.COLORMAP_JET)
feature_img2 = cv2.resize(det_features_img, (435, 435))
#cv2.putText(feature_img2, "det_features", (5, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
else:
feature_img2 = np.zeros((435, 435))
feature_img2 = feature_img2.astype(np.uint8)
feature_img2 = cv2.applyColorMap(feature_img2, cv2.COLORMAP_JET)
#cv2.putText(feature_img2, "det_features", (5, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
feature_img = np.concatenate((img, feature_img2), axis=1)
if len(cost_matrix_det) != 0 and len(cost_matrix_det[0]) != 0:
max_f = cost_matrix_det.max()
min_f = cost_matrix_det.min()
cost_matrix_det = np.round((cost_matrix_det - min_f) / (max_f - min_f) * 255)
d_F_M = []
cutpff_line = [40]*len(cost_matrix_det)*10
for c_m in cost_matrix_det:
add = []
for row in range(len(c_m)):
add += [255-c_m[row]]*10
for row in range(10):
d_F_M += [[40]+add+[40]]
d_F_M = np.array(d_F_M)
d_F_M = d_F_M.astype(np.uint8)
cost_matrix_det_img = cv2.applyColorMap(d_F_M, cv2.COLORMAP_JET)
feature_img2 = cv2.resize(cost_matrix_det_img, (435, 435))
#cv2.putText(feature_img2, "cost_matrix_det", (5, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
else:
feature_img2 = np.zeros((435, 435))
feature_img2 = feature_img2.astype(np.uint8)
feature_img2 = cv2.applyColorMap(feature_img2, cv2.COLORMAP_JET)
#cv2.putText(feature_img2, "cost_matrix_det", (5, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
feature_img = np.concatenate((feature_img, feature_img2), axis=1)
if len(track_features) != 0:
max_f = track_features.max()
min_f = track_features.min()
track_features = np.round((track_features - min_f) / (max_f - min_f) * 255)
track_features = track_features.astype(np.uint8)
d_F_M = []
cutpff_line = [40]*512
for d_f in track_features:
for row in range(45):
d_F_M += [[40]*3+d_f.tolist()+[40]*3]
for row in range(3):
d_F_M += [[40]*3+cutpff_line+[40]*3]
d_F_M = np.array(d_F_M)
d_F_M = d_F_M.astype(np.uint8)
track_features_img = cv2.applyColorMap(d_F_M, cv2.COLORMAP_JET)
feature_img2 = cv2.resize(track_features_img, (435, 435))
#cv2.putText(feature_img2, "track_features", (5, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
else:
feature_img2 = np.zeros((435, 435))
feature_img2 = feature_img2.astype(np.uint8)
feature_img2 = cv2.applyColorMap(feature_img2, cv2.COLORMAP_JET)
#cv2.putText(feature_img2, "track_features", (5, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
feature_img = np.concatenate((feature_img, feature_img2), axis=1)
if len(cost_matrix_track) != 0 and len(cost_matrix_track[0]) != 0:
max_f = cost_matrix_track.max()
min_f = cost_matrix_track.min()
cost_matrix_track = np.round((cost_matrix_track - min_f) / (max_f - min_f) * 255)
d_F_M = []
cutpff_line = [40]*len(cost_matrix_track)*10
for c_m in cost_matrix_track:
add = []
for row in range(len(c_m)):
add += [255-c_m[row]]*10
for row in range(10):
d_F_M += [[40]+add+[40]]
d_F_M = np.array(d_F_M)
d_F_M = d_F_M.astype(np.uint8)
cost_matrix_track_img = cv2.applyColorMap(d_F_M, cv2.COLORMAP_JET)
feature_img2 = cv2.resize(cost_matrix_track_img, (435, 435))
#cv2.putText(feature_img2, "cost_matrix_track", (5, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
else:
feature_img2 = np.zeros((435, 435))
feature_img2 = feature_img2.astype(np.uint8)
feature_img2 = cv2.applyColorMap(feature_img2, cv2.COLORMAP_JET)
#cv2.putText(feature_img2, "cost_matrix_track", (5, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
feature_img = np.concatenate((feature_img, feature_img2), axis=1)
if len(cost_matrix) != 0 and len(cost_matrix[0]) != 0:
max_f = cost_matrix.max()
min_f = cost_matrix.min()
cost_matrix = np.round((cost_matrix - min_f) / (max_f - min_f) * 255)
d_F_M = []
cutpff_line = [40]*len(cost_matrix[0])*10
for c_m in cost_matrix:
add = []
for row in range(len(c_m)):
add += [255-c_m[row]]*10
for row in range(10):
d_F_M += [[40]+add+[40]]
d_F_M = np.array(d_F_M)
d_F_M = d_F_M.astype(np.uint8)
cost_matrix_img = cv2.applyColorMap(d_F_M, cv2.COLORMAP_JET)
feature_img2 = cv2.resize(cost_matrix_img, (435, 435))
#cv2.putText(feature_img2, "cost_matrix", (5, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
else:
feature_img2 = np.zeros((435, 435))
feature_img2 = feature_img2.astype(np.uint8)
feature_img2 = cv2.applyColorMap(feature_img2, cv2.COLORMAP_JET)
#cv2.putText(feature_img2, "cost_matrix", (5, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
feature_img = np.concatenate((feature_img, feature_img2), axis=1)
dst_path = out_path + "/" + seq_num + "_" + num_zero[len(str(frame_id))-1] + str(frame_id) + '.png'
cv2.imwrite(dst_path, feature_img) |