File size: 10,175 Bytes
7734d5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
from loguru import logger

import torch
import torch.backends.cudnn as cudnn
from torch.nn.parallel import DistributedDataParallel as DDP

from yolox.core import launch
from yolox.exp import get_exp
from yolox.utils import configure_nccl, fuse_model, get_local_rank, get_model_info, setup_logger
from yolox.evaluators import MOTEvaluator

import argparse
import os
import random
import warnings
import glob
import motmetrics as mm
from collections import OrderedDict
from pathlib import Path


def make_parser():
    parser = argparse.ArgumentParser("YOLOX Eval")
    parser.add_argument("-expn", "--experiment-name", type=str, default=None)
    parser.add_argument("-n", "--name", type=str, default=None, help="model name")

    # distributed
    parser.add_argument(
        "--dist-backend", default="nccl", type=str, help="distributed backend"
    )
    parser.add_argument(
        "--dist-url",
        default=None,
        type=str,
        help="url used to set up distributed training",
    )
    parser.add_argument("-b", "--batch-size", type=int, default=64, help="batch size")
    parser.add_argument(
        "-d", "--devices", default=None, type=int, help="device for training"
    )
    parser.add_argument(
        "--local_rank", default=0, type=int, help="local rank for dist training"
    )
    parser.add_argument(
        "--num_machines", default=1, type=int, help="num of node for training"
    )
    parser.add_argument(
        "--machine_rank", default=0, type=int, help="node rank for multi-node training"
    )
    parser.add_argument(
        "-f",
        "--exp_file",
        default=None,
        type=str,
        help="pls input your expriment description file",
    )
    parser.add_argument(
        "--fp16",
        dest="fp16",
        default=False,
        action="store_true",
        help="Adopting mix precision evaluating.",
    )
    parser.add_argument(
        "--fuse",
        dest="fuse",
        default=False,
        action="store_true",
        help="Fuse conv and bn for testing.",
    )
    parser.add_argument(
        "--trt",
        dest="trt",
        default=False,
        action="store_true",
        help="Using TensorRT model for testing.",
    )
    parser.add_argument(
        "--test",
        dest="test",
        default=False,
        action="store_true",
        help="Evaluating on test-dev set.",
    )
    parser.add_argument(
        "--speed",
        dest="speed",
        default=False,
        action="store_true",
        help="speed test only.",
    )
    parser.add_argument(
        "opts",
        help="Modify config options using the command-line",
        default=None,
        nargs=argparse.REMAINDER,
    )
    # det args
    parser.add_argument("-c", "--ckpt", default=None, type=str, help="ckpt for eval")
    parser.add_argument("--conf", default=0.1, type=float, help="test conf")
    parser.add_argument("--nms", default=0.7, type=float, help="test nms threshold")
    parser.add_argument("--tsize", default=None, type=int, help="test img size")
    parser.add_argument("--seed", default=None, type=int, help="eval seed")
    # tracking args
    parser.add_argument("--track_thresh", type=float, default=0.4, help="tracking confidence threshold")
    parser.add_argument("--track_buffer", type=int, default=30, help="the frames for keep lost tracks")
    parser.add_argument("--match_thresh", type=int, default=0.9, help="matching threshold for tracking")
    parser.add_argument('--min-box-area', type=float, default=100, help='filter out tiny boxes')
    return parser


def compare_dataframes(gts, ts):
    accs = []
    names = []
    for k, tsacc in ts.items():
        if k in gts:            
            logger.info('Comparing {}...'.format(k))
            accs.append(mm.utils.compare_to_groundtruth(gts[k], tsacc, 'iou', distth=0.5))
            names.append(k)
        else:
            logger.warning('No ground truth for {}, skipping.'.format(k))

    return accs, names


@logger.catch
def main(exp, args, num_gpu):
    if args.seed is not None:
        random.seed(args.seed)
        torch.manual_seed(args.seed)
        cudnn.deterministic = True
        warnings.warn(
            "You have chosen to seed testing. This will turn on the CUDNN deterministic setting, "
        )

    is_distributed = num_gpu > 1

    # set environment variables for distributed training
    cudnn.benchmark = True

    rank = args.local_rank
    # rank = get_local_rank()

    file_name = os.path.join(exp.output_dir, args.experiment_name)

    if rank == 0:
        os.makedirs(file_name, exist_ok=True)

    results_folder = os.path.join(file_name, "track_results_sort")
    os.makedirs(results_folder, exist_ok=True)

    setup_logger(file_name, distributed_rank=rank, filename="val_log.txt", mode="a")
    logger.info("Args: {}".format(args))

    if args.conf is not None:
        exp.test_conf = args.conf
    if args.nms is not None:
        exp.nmsthre = args.nms
    if args.tsize is not None:
        exp.test_size = (args.tsize, args.tsize)

    model = exp.get_model()
    logger.info("Model Summary: {}".format(get_model_info(model, exp.test_size)))
    #logger.info("Model Structure:\n{}".format(str(model)))

    #evaluator = exp.get_evaluator(args.batch_size, is_distributed, args.test)

    val_loader = exp.get_eval_loader(args.batch_size, is_distributed, args.test)
    evaluator = MOTEvaluator(
        args=args,
        dataloader=val_loader,
        img_size=exp.test_size,
        confthre=exp.test_conf,
        nmsthre=exp.nmsthre,
        num_classes=exp.num_classes,
        )

    torch.cuda.set_device(rank)
    model.cuda(rank)
    model.eval()

    if not args.speed and not args.trt:
        if args.ckpt is None:
            ckpt_file = os.path.join(file_name, "best_ckpt.pth.tar")
        else:
            ckpt_file = args.ckpt
        logger.info("loading checkpoint")
        loc = "cuda:{}".format(rank)
        ckpt = torch.load(ckpt_file, map_location=loc)
        # load the model state dict
        model.load_state_dict(ckpt["model"])
        logger.info("loaded checkpoint done.")

    if is_distributed:
        model = DDP(model, device_ids=[rank])

    if args.fuse:
        logger.info("\tFusing model...")
        model = fuse_model(model)

    if args.trt:
        assert (
            not args.fuse and not is_distributed and args.batch_size == 1
        ), "TensorRT model is not support model fusing and distributed inferencing!"
        trt_file = os.path.join(file_name, "model_trt.pth")
        assert os.path.exists(
            trt_file
        ), "TensorRT model is not found!\n Run tools/trt.py first!"
        model.head.decode_in_inference = False
        decoder = model.head.decode_outputs
    else:
        trt_file = None
        decoder = None

    # start evaluate
    *_, summary = evaluator.evaluate_sort(
        model, is_distributed, args.fp16, trt_file, decoder, exp.test_size, results_folder
    )
    logger.info("\n" + summary)

    # evaluate MOTA
    mm.lap.default_solver = 'lap'

    gt_type = '_val_half'
    #gt_type = ''
    print('gt_type', gt_type)
    gtfiles = glob.glob(
      os.path.join('datasets/mot/train', '*/gt/gt{}.txt'.format(gt_type)))
    print('gt_files', gtfiles)
    tsfiles = [f for f in glob.glob(os.path.join(results_folder, '*.txt')) if not os.path.basename(f).startswith('eval')]

    logger.info('Found {} groundtruths and {} test files.'.format(len(gtfiles), len(tsfiles)))
    logger.info('Available LAP solvers {}'.format(mm.lap.available_solvers))
    logger.info('Default LAP solver \'{}\''.format(mm.lap.default_solver))
    logger.info('Loading files.')
    
    gt = OrderedDict([(Path(f).parts[-3], mm.io.loadtxt(f, fmt='mot15-2D', min_confidence=1)) for f in gtfiles])
    ts = OrderedDict([(os.path.splitext(Path(f).parts[-1])[0], mm.io.loadtxt(f, fmt='mot15-2D', min_confidence=-1)) for f in tsfiles])    
    
    mh = mm.metrics.create()    
    accs, names = compare_dataframes(gt, ts)
    
    logger.info('Running metrics')
    metrics = ['recall', 'precision', 'num_unique_objects', 'mostly_tracked',
               'partially_tracked', 'mostly_lost', 'num_false_positives', 'num_misses',
               'num_switches', 'num_fragmentations', 'mota', 'motp', 'num_objects']
    summary = mh.compute_many(accs, names=names, metrics=metrics, generate_overall=True)
    # summary = mh.compute_many(accs, names=names, metrics=mm.metrics.motchallenge_metrics, generate_overall=True)
    # print(mm.io.render_summary(
    #   summary, formatters=mh.formatters, 
    #   namemap=mm.io.motchallenge_metric_names))
    div_dict = {
        'num_objects': ['num_false_positives', 'num_misses', 'num_switches', 'num_fragmentations'],
        'num_unique_objects': ['mostly_tracked', 'partially_tracked', 'mostly_lost']}
    for divisor in div_dict:
        for divided in div_dict[divisor]:
            summary[divided] = (summary[divided] / summary[divisor])
    fmt = mh.formatters
    change_fmt_list = ['num_false_positives', 'num_misses', 'num_switches', 'num_fragmentations', 'mostly_tracked',
                       'partially_tracked', 'mostly_lost']
    for k in change_fmt_list:
        fmt[k] = fmt['mota']
    print(mm.io.render_summary(summary, formatters=fmt, namemap=mm.io.motchallenge_metric_names))

    metrics = mm.metrics.motchallenge_metrics + ['num_objects']
    summary = mh.compute_many(accs, names=names, metrics=metrics, generate_overall=True)
    print(mm.io.render_summary(summary, formatters=mh.formatters, namemap=mm.io.motchallenge_metric_names))
    logger.info('Completed')


if __name__ == "__main__":
    args = make_parser().parse_args()
    exp = get_exp(args.exp_file, args.name)
    exp.merge(args.opts)

    if not args.experiment_name:
        args.experiment_name = exp.exp_name

    num_gpu = torch.cuda.device_count() if args.devices is None else args.devices
    assert num_gpu <= torch.cuda.device_count()

    launch(
        main,
        num_gpu,
        args.num_machines,
        args.machine_rank,
        backend=args.dist_backend,
        dist_url=args.dist_url,
        args=(exp, args, num_gpu),
    )