Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
import numpy as np | |
import plotly.graph_objs as go | |
from io import BytesIO | |
from datasets import load_dataset | |
def load_data_predictions(): | |
#df = pd.read_csv('Predictions.csv') | |
df=load_dataset("mmmapms/Forecasts") | |
df = df.rename(columns={ | |
'Price': 'Real Price', | |
'DNN1': 'Neural Network 1', | |
'DNN2': 'Neural Network 2', | |
'DNN3': 'Neural Network 3', | |
'DNN4': 'Neural Network 4', | |
'DNN_Ensemble': 'Neural Network Ensemble', | |
'LEAR56': 'Regularized Linear Model 1', | |
'LEAR84': 'Regularized Linear Model 2', | |
'LEAR112': 'Regularized Linear Model 3', | |
'LEAR730': 'Regularized Linear Model 4', | |
'LEAR_Ensemble': 'Regularized Linear Model Ensemble', | |
'Persis': 'Persistence Model', | |
'Hybrid_Ensemble': 'Hybrid Ensemble' | |
}) | |
df['Date'] = pd.to_datetime(df['Date'], dayfirst=True) | |
df_filtered = df.dropna(subset=['Real Price']) | |
return df, df_filtered | |
df, df_filtered = load_data_predictions() | |
min_date_allowed_pred = df_filtered['Date'].min().date() | |
max_date_allowed_pred = df_filtered['Date'].max().date() | |
end_date = df['Date'].max().date() | |
start_date = end_date - pd.Timedelta(days=7) | |
models_corr_matrix = ['Neural Network 1', 'Neural Network 2', 'Neural Network 3', | |
'Neural Network 4', 'Regularized Linear Model 1', | |
'Regularized Linear Model 2', 'Regularized Linear Model 3', | |
'Regularized Linear Model 4'] | |
st.title("Belgium: Electricity Price Forecasting") | |
# Sidebar for inputs | |
with st.sidebar: | |
st.write("### Variables Selection for Graph") | |
st.write("Select which variables you'd like to include in the graph. This will affect the displayed charts and available data for download.") | |
selected_variables = st.multiselect("Select variables to display:", options=['Real Price', 'Neural Network 1', 'Neural Network 2', 'Neural Network 3', 'Neural Network 4', 'Neural Network Ensemble', 'Regularized Linear Model 1', 'Regularized Linear Model 2','Regularized Linear Model 3', 'Regularized Linear Model 4', 'Regularized Linear Model Ensemble', 'Hybrid Ensemble', 'Persistence Model'], default=['Real Price', 'Neural Network Ensemble', 'Regularized Linear Model Ensemble', 'Persistence Model']) | |
st.write("### Model Selection for Scatter Plot") | |
model_selection = st.selectbox("Select which model's predictions to display:", options=['Neural Network 1', 'Neural Network 2', 'Neural Network 3', 'Neural Network 4', 'Neural Network Ensemble', 'Regularized Linear Model 1', 'Regularized Linear Model 2','Regularized Linear Model 3', 'Regularized Linear Model 4', 'Regularized Linear Model Ensemble', 'Hybrid Ensemble', 'Persistence Model'], index=10) # Adjust the index as needed to default to your desired option | |
st.write("### Date Range for Metrics Calculation") | |
st.write("Select the date range to calculate the metrics for the predictions. This will influence the accuracy metrics displayed below. The complete dataset ranges from 10/03/2024 until today.") | |
start_date_pred, end_date_pred = st.date_input("Select Date Range for Metrics Calculation:", [min_date_allowed_pred, max_date_allowed_pred]) | |
# Main content | |
if not selected_variables: | |
st.warning("Please select at least one variable to display.") | |
else: | |
# Plotting | |
st.write("## Belgian Day-Ahead Electricity Prices") | |
temp_df = df[(df['Date'] >= pd.Timestamp(start_date))] #& (df['Date'] <= pd.Timestamp(end_date))] | |
fig = go.Figure() | |
for variable in selected_variables: | |
fig.add_trace(go.Scatter(x=temp_df['Date'], y=temp_df[variable], mode='lines', name=variable)) | |
fig.update_layout(xaxis_title="Date", yaxis_title="Price [EUR/MWh]") | |
st.plotly_chart(fig, use_container_width=True) | |
st.write("The graph presented here illustrates the day-ahead electricity price forecasts for Belgium, covering the period from one week ago up to tomorrow. It incorporates predictions from three distinct models: a Neural Network, a Regularized Linear Model, and Persistence, alongside the actual electricity prices up until today.") | |
if not selected_variables: | |
st.warning("Please select at least one variable to display.") | |
else: | |
# Plotting | |
st.write("## Scatter Plot: Real Price vs Model Predictions") | |
# Filter based on the selected date range for plotting | |
plot_df = df[(df['Date'] >= pd.Timestamp(min_date_allowed_pred)) & (df['Date'] <= pd.Timestamp(max_date_allowed_pred))] | |
model_column = model_selection | |
# Create the scatter plot | |
fig = go.Figure() | |
fig.add_trace(go.Scatter(x=plot_df['Real Price'], y=plot_df[model_column], mode='markers', name=f"Real Price vs {model_selection} Predictions")) | |
# Calculate the line of best fit | |
m, b = np.polyfit(plot_df['Real Price'], plot_df[model_column], 1) | |
# Calculate the y-values based on the line of best fit | |
regression_line = m * plot_df['Real Price'] + b | |
# Format the equation to display as the legend name | |
equation = f"y = {m:.2f}x + {b:.2f}" | |
# Add the line of best fit to the figure with the equation as the legend name | |
fig.add_trace(go.Scatter(x=plot_df['Real Price'], y=regression_line, mode='lines', name=equation, line=dict(color='black'))) | |
# Update layout with appropriate titles | |
fig.update_layout(xaxis_title="Real Price [EUR/MWh]", yaxis_title=f"{model_selection} Predictions [EUR/MWh]", title=f"Scatter Plot of Real Price vs {model_selection} Predictions from {min_date_allowed_pred} to {max_date_allowed_pred}") | |
st.plotly_chart(fig, use_container_width=True) | |
# Calculating and displaying metrics | |
if start_date_pred and end_date_pred: | |
st.header("Accuracy Metrics") | |
#st.write(f"The accuracy metrics are calculated from {start_date_pred} to {end_date_pred}, this intervale can be changed in the sidebar.") | |
st.write(f"The accuracy metrics are calculated from **{start_date_pred}** to **{end_date_pred}**. This interval can be changed in the sidebar. Evaluate the forecasting accuracy of our models with key performance indicators. The table summarizes the Mean Absolute Error (MAE), Symmetric Mean Absolute Percentage Error (SMAPE), and Root Mean Square Error (RMSE) for the selected models over your selected date range. Lower values indicate higher precision and reliability of the forecasts.") | |
filtered_df = df_filtered[(df_filtered['Date'] >= pd.Timestamp(start_date_pred)) & (df_filtered['Date'] <= pd.Timestamp(end_date_pred))] | |
# List of models for convenience | |
models = [ | |
'Neural Network 1', 'Neural Network 2', 'Neural Network 3', 'Neural Network 4', 'Neural Network Ensemble', | |
'Regularized Linear Model 1', 'Regularized Linear Model 2', 'Regularized Linear Model 3', 'Regularized Linear Model 4', 'Regularized Linear Model Ensemble', | |
'Persistence Model', 'Hybrid Ensemble' | |
] | |
# Placeholder for results | |
results = {'Metric': ['MAE', 'sMAPE', 'RMSE', 'rMAE']} | |
p_real = filtered_df['Real Price'] | |
# Iterate through each model to calculate and store metrics | |
for model in models: | |
# Assuming column names in filtered_df match the model names directly for simplicity | |
p_pred = filtered_df[model] | |
mae = np.mean(np.abs(p_real - p_pred)) | |
smape = 100 * np.mean(np.abs(p_real - p_pred) / ((np.abs(p_real) + np.abs(p_pred)) / 2)) | |
rmse = np.sqrt(np.mean((p_real - p_pred) ** 2)) | |
rmae = mae/np.mean(np.abs(p_real - filtered_df['Persistence Model'])) | |
# Store the results | |
results[model] = [f"{mae:.2f}", f"{smape:.2f}%", f"{rmse:.2f}", f"{rmae:.2f}"] | |
# Convert the results to a DataFrame for display | |
metrics_df = pd.DataFrame(results) | |
transposed_metrics_df = metrics_df.set_index('Metric').T | |
col1, col2 = st.columns([3, 2]) | |
# Display the transposed DataFrame | |
with col1: | |
# Assuming 'transposed_metrics_df' is your final DataFrame with metrics | |
st.dataframe(transposed_metrics_df, hide_index=False) | |
with col2: | |
st.markdown(""" | |
<style> | |
.big-font { | |
font-size: 20px; | |
font-weight: 500; | |
} | |
</style> | |
<div class="big-font"> | |
Equations | |
</div> | |
""", unsafe_allow_html=True) | |
# Rendering LaTeX equations | |
st.markdown(r""" | |
$\text{MAE} = \frac{1}{n}\sum_{i=1}^{n}|y_i - \hat{y}_i|$ | |
$\text{sMAPE} =100\frac{1}{n} \sum_{i=1}^{n} \frac{|y_i - \hat{y}_i|}{\left(|y_i| + |\hat{y}_i|\right)/2}$ | |
$\text{RMSE} = \sqrt{\frac{1}{n}\sum_{i=1}^{n}\left(y_i - \hat{y}_i\right)^2}$ | |
$\text{rMAE} = \frac{\text{MAE}}{MAE_{\text{Persistence Model}}}$ | |
""") | |
st.write("## Correlation Matrix") | |
models_df = df_filtered[models_corr_matrix] | |
corr_matrix = models_df.corr() | |
fig = go.Figure(data=go.Heatmap( | |
z=corr_matrix.values, | |
x=corr_matrix.columns, | |
y=corr_matrix.index)) | |
fig.update_layout( | |
yaxis_autorange='reversed' # Ensure the y-axis starts from the top | |
) | |
st.plotly_chart(fig, use_container_width=True) | |
st.write("## Access Predictions") | |
st.write("If you are interested in accessing the predictions made by the models, please contact Margarida Mascarenhas (KU Leuven PhD Student) at margarida.mascarenhas@kuleuven.be") | |