Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,34 +2,68 @@ import streamlit as st
|
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
4 |
import plotly.graph_objs as go
|
5 |
-
|
6 |
-
from
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
min_date_allowed_pred = df_filtered['Date'].min().date()
|
35 |
max_date_allowed_pred = df_filtered['Date'].max().date()
|
|
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
4 |
import plotly.graph_objs as go
|
5 |
+
import requests
|
6 |
+
from io import StringIO
|
7 |
+
|
8 |
+
# Function to load predictions from a GitHub repo
|
9 |
+
@st.cache
|
10 |
+
def load_data_predictions(github_token):
|
11 |
+
# GitHub API URL for the CSV file
|
12 |
+
url = 'https://api.github.com/repos/mmmapms/Forecast_DAM_V2/contents/Predictions.csv'
|
13 |
+
headers = {'Authorization': f'token {github_token}'}
|
14 |
+
|
15 |
+
# Make a GET request to the GitHub API
|
16 |
+
response = requests.get(url, headers=headers)
|
17 |
+
|
18 |
+
if response.status_code == 200:
|
19 |
+
# GitHub API response contains the file content in base64 encoding
|
20 |
+
file_content = response.json()['content']
|
21 |
+
csv_content = StringIO(file_content)
|
22 |
+
|
23 |
+
df = pd.read_csv(csv_content, encoding='utf-8')
|
24 |
+
# Your renaming and preprocessing steps here
|
25 |
+
df = df.rename(columns={...}) # Your column renaming logic
|
26 |
+
df['Date'] = pd.to_datetime(df['Date'], dayfirst=True)
|
27 |
+
df_filtered = df.dropna(subset=['Real Price'])
|
28 |
+
return df, df_filtered
|
29 |
+
else:
|
30 |
+
st.error("Failed to download data. Please check your GitHub token and repository details.")
|
31 |
+
return pd.DataFrame(), pd.DataFrame()
|
32 |
+
|
33 |
+
# Streamlit app UI for token input
|
34 |
+
st.title("Belgium: Electricity Price Forecasting")
|
35 |
+
github_token = st.secrets["GitHub_Token_Margarida"]
|
36 |
+
|
37 |
+
if github_token:
|
38 |
+
df, df_filtered = load_data_predictions(github_token)
|
39 |
+
# Your existing logic to use df and df_filtered
|
40 |
+
else:
|
41 |
+
st.warning("Please enter your GitHub Personal Access Token to proceed.")
|
42 |
+
|
43 |
+
|
44 |
+
#@st.cache_data
|
45 |
+
#def load_data_predictions():
|
46 |
+
# df = pd.read_csv('Predictions.csv')
|
47 |
+
# df = df.rename(columns={
|
48 |
+
# 'Price': 'Real Price',
|
49 |
+
# 'DNN1': 'Neural Network 1',
|
50 |
+
# 'DNN2': 'Neural Network 2',
|
51 |
+
# 'DNN3': 'Neural Network 3',
|
52 |
+
# 'DNN4': 'Neural Network 4',
|
53 |
+
# 'DNN_Ensemble': 'Neural Network Ensemble',
|
54 |
+
# 'LEAR56': 'Regularized Linear Model 1',
|
55 |
+
# 'LEAR84': 'Regularized Linear Model 2',
|
56 |
+
# 'LEAR112': 'Regularized Linear Model 3',
|
57 |
+
# 'LEAR730': 'Regularized Linear Model 4',
|
58 |
+
# 'LEAR_Ensemble': 'Regularized Linear Model Ensemble',
|
59 |
+
# 'Persis': 'Persistence Model',
|
60 |
+
# 'Hybrid_Ensemble': 'Hybrid Ensemble'
|
61 |
+
#})
|
62 |
+
# df['Date'] = pd.to_datetime(df['Date'], dayfirst=True)
|
63 |
+
# df_filtered = df.dropna(subset=['Real Price'])
|
64 |
+
# return df, df_filtered
|
65 |
+
|
66 |
+
#df, df_filtered = load_data_predictions()
|
67 |
|
68 |
min_date_allowed_pred = df_filtered['Date'].min().date()
|
69 |
max_date_allowed_pred = df_filtered['Date'].max().date()
|