File size: 13,074 Bytes
f7b117b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
import pandas as pd
import streamlit as st
import plotly.express as px

from utils import get_leaderboard


def header() -> None:
    st.title("EnFoBench - Gas Demand")
    st.divider()


def logos() -> None:
    left, right = st.columns(2)
    with left:
        st.image("./images/ku_leuven_logo.png")
    with right:
        st.image("./images/energyville_logo.png")


def model_selector(models: list[str]) -> set[str]:
    # Group models by their prefix
    model_groups: dict[str, list[str]] = {}
    for model in models:
        group, model_name = model.split(".", maxsplit=1)
        if group not in model_groups:
            model_groups[group] = []
        model_groups[group].append(model_name)

    models_to_plot = set()

    st.header("Models to include")
    left, right = st.columns(2)
    with left:
        select_none = st.button("Select None", use_container_width=True)
        if select_none:
            for model in models:
                st.session_state[model] = False
    with right:
        select_all = st.button("Select All", use_container_width=True)
        if select_all:
            for model in models:
                st.session_state[model] = True

    for model_group, models in model_groups.items():
        st.text(model_group)
        for model_name in models:
            to_plot = st.checkbox(
                model_name, value=True, key=f"{model_group}.{model_name}"
            )
            if to_plot:
                models_to_plot.add(f"{model_group}.{model_name}")
    return models_to_plot


def overview_view(data):
    st.markdown(
        """
    [EnFoBench](https://github.com/attila-balint-kul/energy-forecast-benchmark-toolkit) 
    is a community driven benchmarking framework for energy forecasting models. 
    
    This dashboard presents the results of the gas demand forecasting usecase. All models were cross-validated
    on **365 days** of day ahead forecasting horizon *(10AM until midnight of the next day)*.
    """
    )

    st.divider()
    st.markdown("## Leaderboard")

    leaderboard = get_leaderboard(data, ["MAE.mean", "RMSE.mean", "rMAE.mean"])

    left, middle, right = st.columns(3)
    with left:
        best_models_mae = (
            leaderboard.sort_values("MAE.mean", ascending=False)
            .head(10)
            .sort_values("MAE.mean")
        )
        fig = px.bar(best_models_mae, x="MAE.mean", y=best_models_mae.index)
        fig.update_layout(
            title="Top 10 models by MAE", xaxis_title="", yaxis_title="Model"
        )
        st.plotly_chart(fig, use_container_width=True)

    with middle:
        best_models_mae = (
            leaderboard.sort_values("RMSE.mean", ascending=False)
            .head(10)
            .sort_values("RMSE.mean")
        )
        fig = px.bar(best_models_mae, x="RMSE.mean", y=best_models_mae.index)
        fig.update_layout(title="Top 10 models by RMSE", xaxis_title="", yaxis_title="")
        st.plotly_chart(fig, use_container_width=True)

    with right:
        best_models_mae = (
            leaderboard.sort_values("rMAE.mean", ascending=False)
            .head(10)
            .sort_values("rMAE.mean")
        )
        fig = px.bar(best_models_mae, x="rMAE.mean", y=best_models_mae.index)
        fig.update_layout(title="Top 10 models by rMAE", xaxis_title="", yaxis_title="")
        st.plotly_chart(fig, use_container_width=True)

    st.dataframe(leaderboard, use_container_width=True)


def buildings_view(data):
    buildings = (
        data[
            [
                "unique_id",
                "metadata.cluster_size",
                "metadata.building_class",
                "metadata.location_id",
                "metadata.timezone",
                "dataset.available_history.days",
            ]
        ]
        .groupby("unique_id")
        .first()
        .rename(
            columns={
                "metadata.cluster_size": "Cluster size",
                "metadata.building_class": "Building class",
                "metadata.location_id": "Location ID",
                "metadata.timezone": "Timezone",
                "dataset.available_history.days": "Available history (days)",
            }
        )
    )

    st.metric("Number of buildings", len(buildings))
    st.divider()

    st.markdown("### Buildings")
    st.dataframe(
        buildings,
        use_container_width=True,
        column_config={
            "Available history (days)": st.column_config.ProgressColumn(
                "Available history (days)",
                help="Available training data during the first prediction.",
                format="%f",
                min_value=0,
                max_value=float(buildings["Available history (days)"].max()),
            ),
        },
    )

    left, right = st.columns(2, gap="large")
    with left:
        st.markdown("#### Building classes")
        fig = px.pie(
            buildings.groupby("Building class").size().reset_index(),
            values=0,
            names="Building class",
        )
        st.plotly_chart(fig, use_container_width=True)

    with right:
        st.markdown("#### Timezones")
        fig = px.pie(
            buildings.groupby("Timezone").size().reset_index(),
            values=0,
            names="Timezone",
        )
        st.plotly_chart(fig, use_container_width=True)


def models_view(data):
    models = (
        data[
            [
                "model",
                "cv_config.folds",
                "cv_config.horizon",
                "cv_config.step",
                "cv_config.time",
                "model_info.repository",
                "model_info.tag",
                "model_info.variate_type",
            ]
        ]
        .groupby("model")
        .first()
        .rename(
            columns={
                "cv_config.folds": "CV Folds",
                "cv_config.horizon": "CV Horizon",
                "cv_config.step": "CV Step",
                "cv_config.time": "CV Time",
                "model_info.repository": "Image Repository",
                "model_info.tag": "Image Tag",
                "model_info.variate_type": "Variate type",
            }
        )
    )

    st.metric("Number of models", len(models))
    st.divider()

    st.markdown("### Models")
    st.dataframe(models, use_container_width=True)

    left, right = st.columns(2, gap="large")
    with left:
        st.markdown("#### Variate types")
        fig = px.pie(
            models.groupby("Variate type").size().reset_index(),
            values=0,
            names="Variate type",
        )
        st.plotly_chart(fig, use_container_width=True)

    with right:
        st.markdown("#### Frameworks")
        _df = models.copy()
        _df["Framework"] = _df.index.str.split(".").str[0]
        fig = px.pie(
            _df.groupby("Framework").size().reset_index(),
            values=0,
            names="Framework",
        )
        st.plotly_chart(fig, use_container_width=True)


def performance_view(data: pd.DataFrame, models_to_plot: set[str]):
    data_to_plot = data[data["model"].isin(models_to_plot)].sort_values(
        by="model", ascending=True
    )

    left, right = st.columns(2, gap="small")
    with left:
        metric = st.selectbox("Metric", ["MAE", "RMSE", "MBE", "rMAE"], index=0)
    with right:
        aggregation = st.selectbox(
            "Aggregation", ["min", "mean", "median", "max", "std"], index=1
        )
    st.markdown(f"#### {aggregation.capitalize()} {metric} per building")

    rank_df = (
        data_to_plot.groupby(["model"])
        .agg("median", numeric_only=True)
        .sort_values(by=f"{metric}.{aggregation}")
        .reset_index()
        .rename_axis("rank")
        .reset_index()[["rank", "model"]]
    )

    fig = px.box(
        data_to_plot.merge(rank_df, on="model").sort_values(by="rank"),
        x=f"{metric}.{aggregation}",
        y="model",
        color="model",
        points="all",
    )
    fig.update_layout(showlegend=False, height=40 * len(models_to_plot))
    st.plotly_chart(fig, use_container_width=True)

    st.divider()

    left, right = st.columns(2, gap="large")
    with left:
        x_metric = st.selectbox(
            "Metric", ["MAE", "RMSE", "MBE", "rMAE"], index=0, key="x_metric"
        )
        x_aggregation = st.selectbox(
            "Aggregation",
            ["min", "mean", "median", "max", "std"],
            index=1,
            key="x_aggregation",
        )
    with right:
        y_metric = st.selectbox(
            "Aggregation", ["MAE", "RMSE", "MBE", "rMAE"], index=1, key="y_metric"
        )
        y_aggregation = st.selectbox(
            "Aggregation",
            ["min", "mean", "median", "max", "std"],
            index=1,
            key="y_aggregation",
        )

    st.markdown(
        f"#### {x_aggregation.capitalize()} {x_metric} vs {y_aggregation.capitalize()} {y_metric}"
    )
    fig = px.scatter(
        data_to_plot,
        x=f"{x_metric}.{x_aggregation}",
        y=f"{y_metric}.{y_aggregation}",
        color="model",
    )
    fig.update_layout(height=600)
    st.plotly_chart(fig, use_container_width=True)

    st.divider()

    left, right = st.columns(2, gap="small")
    with left:
        metric = st.selectbox(
            "Metric", ["MAE", "RMSE", "MBE", "rMAE"], index=0, key="table_metric"
        )
    with right:
        aggregation = st.selectbox(
            "Aggregation across folds",
            ["min", "mean", "median", "max", "std"],
            index=1,
            key="table_aggregation",
        )

    metrics_table = data_to_plot.groupby(["model"]).agg(
        aggregation, numeric_only=True
    )[
        [
            f"{metric}.min",
            f"{metric}.mean",
            f"{metric}.median",
            f"{metric}.max",
            f"{metric}.std",
        ]
    ]

    def custom_table(styler):
        styler.background_gradient(cmap="seismic", axis=0)
        styler.format(precision=2)

        # center text and increase font size
        styler.map(lambda x: "text-align: center; font-size: 14px;")
        return styler

    st.markdown(f"#### {aggregation.capitalize()} {metric} stats per model")
    styled_table = metrics_table.style.pipe(custom_table)
    st.dataframe(styled_table, use_container_width=True)

    metrics_per_building_table = (
        data_to_plot.groupby(["model", "unique_id"])
        .apply(aggregation, numeric_only=True)
        .reset_index()
        .pivot(index="model", columns="unique_id", values=f"{metric}.{aggregation}")
    )
    metrics_per_building_table.insert(
        0, "median", metrics_per_building_table.median(axis=1)
    )
    metrics_per_building_table.insert(
        0, "mean", metrics_per_building_table.mean(axis=1)
    )
    metrics_per_building_table = metrics_per_building_table.sort_values(by="mean")

    def custom_table(styler):
        styler.background_gradient(cmap="seismic", axis=None)
        styler.format(precision=2)

        # center text and increase font size
        styler.map(lambda x: "text-align: center; font-size: 14px;")
        return styler

    st.markdown(f"#### {aggregation.capitalize()} {metric} stats per building")
    styled_table = metrics_per_building_table.style.pipe(custom_table)
    st.dataframe(styled_table, use_container_width=True)


def computation_view(data, models_to_plot: set[str]):
    data_to_plot = data[data["model"].isin(models_to_plot)].sort_values(
        by="model", ascending=True
    )

    st.markdown("#### Computational Resources")
    fig = px.parallel_coordinates(
        data_to_plot.groupby("model").mean(numeric_only=True).reset_index(),
        dimensions=[
            "model",
            "resource_usage.CPU",
            "resource_usage.memory",
            "MAE.mean",
            "RMSE.mean",
            "MBE.mean",
            "rMAE.mean",
        ],
        color="rMAE.mean",
        color_continuous_scale=px.colors.diverging.Portland,
    )
    st.plotly_chart(fig, use_container_width=True)

    st.divider()

    left, center, right = st.columns(3, gap="small")
    with left:
        metric = st.selectbox("Metric", ["MAE", "RMSE", "MBE", "rMAE"], index=0)
    with center:
        aggregation_per_building = st.selectbox(
            "Aggregation per building", ["min", "mean", "median", "max", "std"], index=1
        )
    with right:
        aggregation_per_model = st.selectbox(
            "Aggregation per model", ["min", "mean", "median", "max", "std"], index=1
        )

    st.markdown(
        f"#### {aggregation_per_model.capitalize()} {aggregation_per_building.capitalize()} {metric} vs CPU usage"
    )
    aggregated_data = (
        data_to_plot.groupby("model")
        .agg(aggregation_per_building, numeric_only=True)
        .reset_index()
    )
    fig = px.scatter(
        aggregated_data,
        x="resource_usage.CPU",
        y=f"{metric}.{aggregation_per_model}",
        color="model",
        log_x=True,
    )
    fig.update_layout(height=600)
    st.plotly_chart(fig, use_container_width=True)