EnFoBench-GasDemand / components.py
attila-balint-kul's picture
Upload components.py
1c6134e verified
raw
history blame
20.8 kB
import pandas as pd
import plotly.express as px
import streamlit as st
from pandas.io.formats.style import Styler
from utils import get_leaderboard, get_model_ranks
def header(title: str) -> None:
st.title(title)
st.markdown(
"""
[EnFoBench](https://github.com/attila-balint-kul/energy-forecast-benchmark-toolkit)
is a community driven benchmarking framework for energy forecasting models.
"""
)
st.divider()
def logos() -> None:
left, right = st.columns(2)
with left:
st.image("./images/ku_leuven_logo.png")
with right:
st.image("./images/energyville_logo.png")
def links(current: str) -> None:
st.header("Sources")
st.link_button(
"GitHub Repository",
url="https://github.com/attila-balint-kul/energy-forecast-benchmark-toolkit",
use_container_width=True,
)
st.link_button(
"Documentation",
url="https://attila-balint-kul.github.io/energy-forecast-benchmark-toolkit/",
use_container_width=True,
)
st.link_button(
"Electricity Demand Dataset",
url="https://huggingface.co/datasets/EDS-lab/electricity-demand",
use_container_width=True,
)
st.link_button(
"HuggingFace Organization",
url="https://huggingface.co/EDS-lab",
use_container_width=True,
)
st.header("Other Dashboards")
if current != "ElectricityDemand":
st.link_button(
"Electricity Demand",
url="https://huggingface.co/spaces/EDS-lab/EnFoBench-ElectricityDemand",
use_container_width=True,
)
if current != "GasDemand":
st.link_button(
"Gas Demand",
url="https://huggingface.co/spaces/EDS-lab/EnFoBench-GasDemand",
use_container_width=True,
)
if current != "PVGeneration":
st.link_button(
"PVGeneration",
url="https://huggingface.co/spaces/EDS-lab/EnFoBench-PVGeneration",
use_container_width=True,
)
def model_selector(models: list[str], data: pd.DataFrame) -> set[str]:
# Group models by their prefix
model_groups: dict[str, list[str]] = {}
for model in models:
group, model_name = model.split(".", maxsplit=1)
if group not in model_groups:
model_groups[group] = []
model_groups[group].append(model_name)
models_to_plot = set()
st.header("Models to include")
left, middle, right = st.columns(3)
with left:
best_by_mae = st.button("Best by MAE", use_container_width=True)
if best_by_mae:
best_models_by_mae = get_model_ranks(data, "MAE.mean").head(10).model.tolist()
for model in models:
if model in best_models_by_mae:
st.session_state[model] = True
else:
st.session_state[model] = False
with middle:
best_by_rmse = st.button("Best by RMSE", use_container_width=True)
if best_by_rmse:
best_models_by_rmse = get_model_ranks(data, "RMSE.mean").head(10).model.tolist()
for model in models:
if model in best_models_by_rmse:
st.session_state[model] = True
else:
st.session_state[model] = False
with right:
best_by_rmae = st.button("Best by rMAE", use_container_width=True)
if best_by_rmae:
best_models_by_rmae = get_model_ranks(data, "rMAE.mean").head(10).model.tolist()
for model in models:
if model in best_models_by_rmae:
st.session_state[model] = True
else:
st.session_state[model] = False
left, right = st.columns(2)
with left:
select_none = st.button("Select None", use_container_width=True)
if select_none:
for model in models:
st.session_state[model] = False
with right:
select_all = st.button("Select All", use_container_width=True)
if select_all:
for model in models:
st.session_state[model] = True
for model_group, models in model_groups.items():
st.text(model_group)
for model_name in models:
to_plot = st.checkbox(
model_name, value=True, key=f"{model_group}.{model_name}"
)
if to_plot:
models_to_plot.add(f"{model_group}.{model_name}")
return models_to_plot
def overview_view(data: pd.DataFrame):
st.markdown("## Leaderboard")
leaderboard = get_leaderboard(data, ["MAE.mean", "RMSE.mean", "rMAE.mean"])
left, middle, right = st.columns(3)
with left:
best_models_mae = (
leaderboard.sort_values("MAE.mean", ascending=False)
.head(10)
.sort_values("MAE.mean")
)
fig = px.bar(best_models_mae, x="MAE.mean", y=best_models_mae.index)
fig.update_layout(
title="Top 10 models by MAE",
xaxis_title="",
yaxis_title="Model",
height=600,
)
st.plotly_chart(fig, use_container_width=True)
with middle:
best_models_mae = (
leaderboard.sort_values("RMSE.mean", ascending=False)
.head(10)
.sort_values("RMSE.mean")
)
fig = px.bar(best_models_mae, x="RMSE.mean", y=best_models_mae.index)
fig.update_layout(
title="Top 10 models by RMSE", xaxis_title="", yaxis_title="", height=600
)
st.plotly_chart(fig, use_container_width=True)
with right:
best_models_mae = (
leaderboard.sort_values("rMAE.mean", ascending=False)
.head(10)
.sort_values("rMAE.mean")
)
fig = px.bar(best_models_mae, x="rMAE.mean", y=best_models_mae.index)
fig.update_layout(
title="Top 10 models by rMAE", xaxis_title="", yaxis_title="", height=600
)
st.plotly_chart(fig, use_container_width=True)
st.dataframe(leaderboard, use_container_width=True)
def buildings_view(data: pd.DataFrame):
if 'metadata.cluster_size' not in data.columns:
data['metadata.cluster_size'] = 1
if 'metadata.building_class' not in data.columns:
data['metadata.building_class'] = "Unknown"
buildings = (
data[
[
"unique_id",
"metadata.cluster_size",
"metadata.building_class",
"metadata.location_id",
"metadata.timezone",
"dataset.available_history.days",
"dataset.available_history.observations",
"metadata.freq",
]
]
.groupby("unique_id")
.first()
.rename(
columns={
"metadata.cluster_size": "Cluster size",
"metadata.building_class": "Building class",
"metadata.location_id": "Location ID",
"metadata.timezone": "Timezone",
"dataset.available_history.days": "Available history (days)",
"dataset.available_history.observations": "Available history (#)",
"metadata.freq": "Frequency",
}
)
)
left, middle, right = st.columns(3)
with left:
st.metric("Number of buildings", data["unique_id"].nunique())
with middle:
st.metric(
"Residential",
data[data["metadata.building_class"] == "Residential"][
"unique_id"
].nunique(),
)
with right:
st.metric(
"Commercial",
data[data["metadata.building_class"] == "Commercial"][
"unique_id"
].nunique(),
)
st.divider()
left, middle, right = st.columns(3, gap="large")
with left:
st.markdown("#### Building classes")
fig = px.pie(
buildings.groupby("Building class").size().reset_index(),
values=0,
names="Building class",
)
fig.update_layout(
legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1)
)
st.plotly_chart(fig, use_container_width=True)
with middle:
st.markdown("#### Timezones")
fig = px.pie(
buildings.groupby("Timezone").size().reset_index(),
values=0,
names="Timezone",
)
fig.update_layout(
legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1)
)
st.plotly_chart(fig, use_container_width=True)
with right:
st.markdown("#### Frequencies")
fig = px.pie(
buildings.groupby("Frequency").size().reset_index(),
values=0,
names="Frequency",
)
fig.update_layout(
legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1)
)
st.plotly_chart(fig, use_container_width=True)
st.divider()
st.markdown("#### Buildings")
st.dataframe(
buildings.sort_values("Available history (days)"),
use_container_width=True,
column_config={
"Available history (days)": st.column_config.ProgressColumn(
"Available history (days)",
help="Available training data during the first prediction.",
format="%f",
min_value=0,
max_value=float(buildings["Available history (days)"].max()),
),
"Available history (#)": st.column_config.ProgressColumn(
"Available history (#)",
help="Available training data during the first prediction.",
format="%f",
min_value=0,
max_value=float(buildings["Available history (#)"].max()),
),
},
)
def models_view(data: pd.DataFrame):
models = (
data[
[
"model",
"cv_config.folds",
"cv_config.horizon",
"cv_config.step",
"cv_config.time",
"model_info.repository",
"model_info.tag",
"model_info.variate_type",
]
]
.groupby("model")
.first()
.rename(
columns={
"cv_config.folds": "CV Folds",
"cv_config.horizon": "CV Horizon",
"cv_config.step": "CV Step",
"cv_config.time": "CV Time",
"model_info.repository": "Image Repository",
"model_info.tag": "Image Tag",
"model_info.variate_type": "Variate type",
}
)
)
left, middle, right = st.columns(3)
with left:
st.metric("Models", len(models))
with middle:
st.metric(
"Univariate",
data[data["model_info.variate_type"] == "univariate"]["model"].nunique(),
)
with right:
st.metric(
"Univariate",
data[data["model_info.variate_type"] == "multivariate"]["model"].nunique(),
)
st.divider()
left, right = st.columns(2, gap="large")
with left:
st.markdown("#### Variate types")
fig = px.pie(
models.groupby("Variate type").size().reset_index(),
values=0,
names="Variate type",
)
st.plotly_chart(fig, use_container_width=True)
with right:
st.markdown("#### Frameworks")
_df = models.copy()
_df["Framework"] = _df.index.str.split(".").str[0]
fig = px.pie(
_df.groupby("Framework").size().reset_index(),
values=0,
names="Framework",
)
st.plotly_chart(fig, use_container_width=True)
st.divider()
st.markdown("### Models")
st.dataframe(models, use_container_width=True)
def accuracy_view(data: pd.DataFrame, models_to_plot: set[str]):
data_to_plot = data[data["model"].isin(models_to_plot)].sort_values(
by="model", ascending=True
)
left, right = st.columns(2, gap="small")
with left:
metric = st.selectbox("Metric", ["MAE", "RMSE", "MBE", "rMAE"], index=0)
with right:
aggregation = st.selectbox(
"Aggregation", ["min", "mean", "median", "max", "std"], index=1
)
st.markdown(f"#### {aggregation.capitalize()} {metric} per building")
if data_to_plot.empty:
st.warning("No data to display.")
else:
model_ranks = get_model_ranks(data_to_plot, f"{metric}.{aggregation}")
fig = px.box(
data_to_plot.merge(model_ranks, on="model").sort_values(by="rank"),
x=f"{metric}.{aggregation}",
y="model",
color="model",
points="all",
)
fig.update_layout(showlegend=False, height=50 * len(models_to_plot))
st.plotly_chart(fig, use_container_width=True)
st.divider()
left, right = st.columns(2, gap="large")
with left:
x_metric = st.selectbox(
"Metric", ["MAE", "RMSE", "MBE", "rMAE"], index=0, key="x_metric"
)
x_aggregation = st.selectbox(
"Aggregation",
["min", "mean", "median", "max", "std"],
index=1,
key="x_aggregation",
)
with right:
y_metric = st.selectbox(
"Aggregation", ["MAE", "RMSE", "MBE", "rMAE"], index=1, key="y_metric"
)
y_aggregation = st.selectbox(
"Aggregation",
["min", "mean", "median", "max", "std"],
index=1,
key="y_aggregation",
)
st.markdown(
f"#### {x_aggregation.capitalize()} {x_metric} vs {y_aggregation.capitalize()} {y_metric}"
)
if data_to_plot.empty:
st.warning("No data to display.")
else:
fig = px.scatter(
data_to_plot,
x=f"{x_metric}.{x_aggregation}",
y=f"{y_metric}.{y_aggregation}",
color="model",
)
fig.update_layout(height=600)
st.plotly_chart(fig, use_container_width=True)
st.divider()
left, right = st.columns(2, gap="small")
with left:
metric = st.selectbox(
"Metric", ["MAE", "RMSE", "MBE", "rMAE"], index=0, key="table_metric"
)
with right:
aggregation = st.selectbox(
"Aggregation across folds",
["min", "mean", "median", "max", "std"],
index=1,
key="table_aggregation",
)
metrics_table = data_to_plot.groupby(["model"]).agg(aggregation, numeric_only=True)[
[
f"{metric}.min",
f"{metric}.mean",
f"{metric}.median",
f"{metric}.max",
f"{metric}.std",
]
].sort_values(by=f"{metric}.mean")
def custom_table(styler):
styler.background_gradient(cmap="seismic", axis=0)
styler.format(precision=2)
# center text and increase font size
styler.map(lambda x: "text-align: center; font-size: 14px;")
return styler
st.markdown(f"#### {aggregation.capitalize()} {metric} stats per model")
styled_table = metrics_table.style.pipe(custom_table)
st.dataframe(styled_table, use_container_width=True)
metrics_per_building_table = (
data_to_plot.groupby(["model", "unique_id"])
.apply(aggregation, numeric_only=True)
.reset_index()
.pivot(index="model", columns="unique_id", values=f"{metric}.{aggregation}")
)
metrics_per_building_table.insert(
0, "mean", metrics_per_building_table.mean(axis=1)
)
metrics_per_building_table = metrics_per_building_table.sort_values(by="mean").drop(columns="mean")
def custom_table(styler: Styler):
styler.background_gradient(cmap="seismic", axis=None)
styler.format(precision=2)
# center text and increase font size
styler.map(lambda x: "text-align: center; font-size: 14px;")
return styler
st.markdown(f"#### {aggregation.capitalize()} {metric} stats per building")
styled_table = metrics_per_building_table.style.pipe(custom_table)
st.dataframe(styled_table, use_container_width=True)
def relative_performance_view(data: pd.DataFrame, models_to_plot: set[str]):
data_to_plot = data[data["model"].isin(models_to_plot)].sort_values(
by="model", ascending=True
)
st.markdown("#### Relative performance")
if data_to_plot.empty:
st.warning("No data to display.")
else:
baseline_choices = sorted(
data.filter(like="better_than")
.columns.str.removeprefix("better_than.")
.tolist()
)
if len(baseline_choices) > 1:
better_than_baseline = st.selectbox("Baseline model", options=baseline_choices)
else:
better_than_baseline = baseline_choices[0]
data_to_plot.loc[:, f"better_than.{better_than_baseline}.percentage"] = (
pd.json_normalize(data_to_plot[f"better_than.{better_than_baseline}"])[
"percentage"
].values
* 100
)
model_rank = get_model_ranks(data_to_plot, f"better_than.{better_than_baseline}.percentage")
fig = px.box(
data_to_plot.merge(model_rank).sort_values(by="rank"),
x=f"better_than.{better_than_baseline}.percentage",
y="model",
points="all",
)
fig.update_xaxes(range=[0, 100], title_text="Better than baseline (%)")
fig.update_layout(
showlegend=False,
height=50 * len(models_to_plot),
title=f"Better than {better_than_baseline} on % of days per building",
)
st.plotly_chart(fig, use_container_width=True)
def computation_view(data: pd.DataFrame, models_to_plot: set[str]):
data_to_plot = data[data["model"].isin(models_to_plot)].sort_values(
by="model", ascending=True
)
data_to_plot["resource_usage.CPU"] /= 3600
st.markdown("#### Computational Resources")
left, center, right = st.columns(3, gap="small")
with left:
metric = st.selectbox("Metric", ["MAE", "RMSE", "MBE", "rMAE"], index=0)
with center:
aggregation_per_building = st.selectbox(
"Aggregation per building", ["min", "mean", "median", "max", "std"], index=1
)
with right:
aggregation_per_model = st.selectbox(
"Aggregation per model", ["min", "mean", "median", "max", "std"], index=1
)
st.markdown(
f"#### {aggregation_per_model.capitalize()} {aggregation_per_building.capitalize()} {metric} vs CPU usage"
)
if data_to_plot.empty:
st.warning("No data to display.")
else:
aggregated_data = (
data_to_plot.groupby("model")
.agg(aggregation_per_building, numeric_only=True)
.reset_index()
)
fig = px.scatter(
aggregated_data,
x="resource_usage.CPU",
y=f"{metric}.{aggregation_per_model}",
color="model",
log_x=True,
)
fig.update_layout(height=600)
fig.update_xaxes(title_text="CPU usage (hours)")
fig.update_yaxes(
title_text=f"{metric} ({aggregation_per_building}, {aggregation_per_model})"
)
st.plotly_chart(fig, use_container_width=True)
st.divider()
st.markdown("#### Computational time vs historical data")
if data_to_plot.empty:
st.warning("No data to display.")
else:
fig = px.scatter(
data_to_plot,
x="dataset.available_history.observations",
y="resource_usage.CPU",
color="model",
trendline="ols",
hover_data=["model", "unique_id"],
)
fig.update_layout(height=600)
fig.update_xaxes(title_text="Available historical observations (#)")
fig.update_yaxes(title_text="CPU usage (hours)")
st.plotly_chart(fig, use_container_width=True)
st.divider()
cpu_per_building_table = (
data_to_plot.pivot(index="model", columns="unique_id", values="resource_usage.CPU")
)
def custom_table(styler: Styler):
styler.background_gradient(cmap="seismic", axis=None)
styler.format(precision=2)
# center text and increase font size
styler.map(lambda x: "text-align: center; font-size: 14px;")
return styler
st.markdown(f"#### Computational time per building")
styled_table = cpu_per_building_table.style.pipe(custom_table)
st.dataframe(styled_table, use_container_width=True)