Spaces:
Sleeping
Sleeping
import pandas as pd | |
import plotly.express as px | |
import streamlit as st | |
from pandas.io.formats.style import Styler | |
from utils import get_leaderboard, get_model_ranks | |
def header(title: str) -> None: | |
st.title(title) | |
st.markdown( | |
""" | |
[EnFoBench](https://github.com/attila-balint-kul/energy-forecast-benchmark-toolkit) | |
is a community driven benchmarking framework for energy forecasting models. | |
""" | |
) | |
st.divider() | |
def logos() -> None: | |
left, right = st.columns(2) | |
with left: | |
st.image("./images/ku_leuven_logo.png") | |
with right: | |
st.image("./images/energyville_logo.png") | |
def links(current: str) -> None: | |
st.header("Sources") | |
st.link_button( | |
"GitHub Repository", | |
url="https://github.com/attila-balint-kul/energy-forecast-benchmark-toolkit", | |
use_container_width=True, | |
) | |
st.link_button( | |
"Documentation", | |
url="https://attila-balint-kul.github.io/energy-forecast-benchmark-toolkit/", | |
use_container_width=True, | |
) | |
st.link_button( | |
"Electricity Demand Dataset", | |
url="https://huggingface.co/datasets/EDS-lab/electricity-demand", | |
use_container_width=True, | |
) | |
st.link_button( | |
"HuggingFace Organization", | |
url="https://huggingface.co/EDS-lab", | |
use_container_width=True, | |
) | |
st.header("Other Dashboards") | |
if current != "ElectricityDemand": | |
st.link_button( | |
"Electricity Demand", | |
url="https://huggingface.co/spaces/EDS-lab/EnFoBench-ElectricityDemand", | |
use_container_width=True, | |
) | |
if current != "GasDemand": | |
st.link_button( | |
"Gas Demand", | |
url="https://huggingface.co/spaces/EDS-lab/EnFoBench-GasDemand", | |
use_container_width=True, | |
) | |
if current != "PVGeneration": | |
st.link_button( | |
"PVGeneration", | |
url="https://huggingface.co/spaces/EDS-lab/EnFoBench-PVGeneration", | |
use_container_width=True, | |
) | |
def model_selector(models: list[str], data: pd.DataFrame) -> set[str]: | |
# Group models by their prefix | |
model_groups: dict[str, list[str]] = {} | |
for model in models: | |
group, model_name = model.split(".", maxsplit=1) | |
if group not in model_groups: | |
model_groups[group] = [] | |
model_groups[group].append(model_name) | |
models_to_plot = set() | |
st.header("Models to include") | |
left, middle, right = st.columns(3) | |
with left: | |
best_by_mae = st.button("Best by MAE", use_container_width=True) | |
if best_by_mae: | |
best_models_by_mae = get_model_ranks(data, "MAE.mean").head(10).model.tolist() | |
for model in models: | |
if model in best_models_by_mae: | |
st.session_state[model] = True | |
else: | |
st.session_state[model] = False | |
with middle: | |
best_by_rmse = st.button("Best by RMSE", use_container_width=True) | |
if best_by_rmse: | |
best_models_by_rmse = get_model_ranks(data, "RMSE.mean").head(10).model.tolist() | |
for model in models: | |
if model in best_models_by_rmse: | |
st.session_state[model] = True | |
else: | |
st.session_state[model] = False | |
with right: | |
best_by_rmae = st.button("Best by rMAE", use_container_width=True) | |
if best_by_rmae: | |
best_models_by_rmae = get_model_ranks(data, "rMAE.mean").head(10).model.tolist() | |
for model in models: | |
if model in best_models_by_rmae: | |
st.session_state[model] = True | |
else: | |
st.session_state[model] = False | |
left, right = st.columns(2) | |
with left: | |
select_none = st.button("Select None", use_container_width=True) | |
if select_none: | |
for model in models: | |
st.session_state[model] = False | |
with right: | |
select_all = st.button("Select All", use_container_width=True) | |
if select_all: | |
for model in models: | |
st.session_state[model] = True | |
for model_group, models in model_groups.items(): | |
st.text(model_group) | |
for model_name in models: | |
to_plot = st.checkbox( | |
model_name, value=True, key=f"{model_group}.{model_name}" | |
) | |
if to_plot: | |
models_to_plot.add(f"{model_group}.{model_name}") | |
return models_to_plot | |
def overview_view(data: pd.DataFrame): | |
st.markdown("## Leaderboard") | |
leaderboard = get_leaderboard(data, ["MAE.mean", "RMSE.mean", "rMAE.mean"]) | |
left, middle, right = st.columns(3) | |
with left: | |
best_models_mae = ( | |
leaderboard.sort_values("MAE.mean", ascending=False) | |
.head(10) | |
.sort_values("MAE.mean") | |
) | |
fig = px.bar(best_models_mae, x="MAE.mean", y=best_models_mae.index) | |
fig.update_layout( | |
title="Top 10 models by MAE", | |
xaxis_title="", | |
yaxis_title="Model", | |
height=600, | |
) | |
st.plotly_chart(fig, use_container_width=True) | |
with middle: | |
best_models_mae = ( | |
leaderboard.sort_values("RMSE.mean", ascending=False) | |
.head(10) | |
.sort_values("RMSE.mean") | |
) | |
fig = px.bar(best_models_mae, x="RMSE.mean", y=best_models_mae.index) | |
fig.update_layout( | |
title="Top 10 models by RMSE", xaxis_title="", yaxis_title="", height=600 | |
) | |
st.plotly_chart(fig, use_container_width=True) | |
with right: | |
best_models_mae = ( | |
leaderboard.sort_values("rMAE.mean", ascending=False) | |
.head(10) | |
.sort_values("rMAE.mean") | |
) | |
fig = px.bar(best_models_mae, x="rMAE.mean", y=best_models_mae.index) | |
fig.update_layout( | |
title="Top 10 models by rMAE", xaxis_title="", yaxis_title="", height=600 | |
) | |
st.plotly_chart(fig, use_container_width=True) | |
st.dataframe(leaderboard, use_container_width=True) | |
def buildings_view(data: pd.DataFrame): | |
if 'metadata.cluster_size' not in data.columns: | |
data['metadata.cluster_size'] = 1 | |
if 'metadata.building_class' not in data.columns: | |
data['metadata.building_class'] = "Unknown" | |
buildings = ( | |
data[ | |
[ | |
"unique_id", | |
"metadata.cluster_size", | |
"metadata.building_class", | |
"metadata.location_id", | |
"metadata.timezone", | |
"dataset.available_history.days", | |
"dataset.available_history.observations", | |
"metadata.freq", | |
] | |
] | |
.groupby("unique_id") | |
.first() | |
.rename( | |
columns={ | |
"metadata.cluster_size": "Cluster size", | |
"metadata.building_class": "Building class", | |
"metadata.location_id": "Location ID", | |
"metadata.timezone": "Timezone", | |
"dataset.available_history.days": "Available history (days)", | |
"dataset.available_history.observations": "Available history (#)", | |
"metadata.freq": "Frequency", | |
} | |
) | |
) | |
left, middle, right = st.columns(3) | |
with left: | |
st.metric("Number of buildings", data["unique_id"].nunique()) | |
with middle: | |
st.metric( | |
"Residential", | |
data[data["metadata.building_class"] == "Residential"][ | |
"unique_id" | |
].nunique(), | |
) | |
with right: | |
st.metric( | |
"Commercial", | |
data[data["metadata.building_class"] == "Commercial"][ | |
"unique_id" | |
].nunique(), | |
) | |
st.divider() | |
left, middle, right = st.columns(3, gap="large") | |
with left: | |
st.markdown("#### Building classes") | |
fig = px.pie( | |
buildings.groupby("Building class").size().reset_index(), | |
values=0, | |
names="Building class", | |
) | |
fig.update_layout( | |
legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1) | |
) | |
st.plotly_chart(fig, use_container_width=True) | |
with middle: | |
st.markdown("#### Timezones") | |
fig = px.pie( | |
buildings.groupby("Timezone").size().reset_index(), | |
values=0, | |
names="Timezone", | |
) | |
fig.update_layout( | |
legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1) | |
) | |
st.plotly_chart(fig, use_container_width=True) | |
with right: | |
st.markdown("#### Frequencies") | |
fig = px.pie( | |
buildings.groupby("Frequency").size().reset_index(), | |
values=0, | |
names="Frequency", | |
) | |
fig.update_layout( | |
legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1) | |
) | |
st.plotly_chart(fig, use_container_width=True) | |
st.divider() | |
st.markdown("#### Buildings") | |
st.dataframe( | |
buildings.sort_values("Available history (days)"), | |
use_container_width=True, | |
column_config={ | |
"Available history (days)": st.column_config.ProgressColumn( | |
"Available history (days)", | |
help="Available training data during the first prediction.", | |
format="%f", | |
min_value=0, | |
max_value=float(buildings["Available history (days)"].max()), | |
), | |
"Available history (#)": st.column_config.ProgressColumn( | |
"Available history (#)", | |
help="Available training data during the first prediction.", | |
format="%f", | |
min_value=0, | |
max_value=float(buildings["Available history (#)"].max()), | |
), | |
}, | |
) | |
def models_view(data: pd.DataFrame): | |
models = ( | |
data[ | |
[ | |
"model", | |
"cv_config.folds", | |
"cv_config.horizon", | |
"cv_config.step", | |
"cv_config.time", | |
"model_info.repository", | |
"model_info.tag", | |
"model_info.variate_type", | |
] | |
] | |
.groupby("model") | |
.first() | |
.rename( | |
columns={ | |
"cv_config.folds": "CV Folds", | |
"cv_config.horizon": "CV Horizon", | |
"cv_config.step": "CV Step", | |
"cv_config.time": "CV Time", | |
"model_info.repository": "Image Repository", | |
"model_info.tag": "Image Tag", | |
"model_info.variate_type": "Variate type", | |
} | |
) | |
) | |
left, middle, right = st.columns(3) | |
with left: | |
st.metric("Models", len(models)) | |
with middle: | |
st.metric( | |
"Univariate", | |
data[data["model_info.variate_type"] == "univariate"]["model"].nunique(), | |
) | |
with right: | |
st.metric( | |
"Univariate", | |
data[data["model_info.variate_type"] == "multivariate"]["model"].nunique(), | |
) | |
st.divider() | |
left, right = st.columns(2, gap="large") | |
with left: | |
st.markdown("#### Variate types") | |
fig = px.pie( | |
models.groupby("Variate type").size().reset_index(), | |
values=0, | |
names="Variate type", | |
) | |
st.plotly_chart(fig, use_container_width=True) | |
with right: | |
st.markdown("#### Frameworks") | |
_df = models.copy() | |
_df["Framework"] = _df.index.str.split(".").str[0] | |
fig = px.pie( | |
_df.groupby("Framework").size().reset_index(), | |
values=0, | |
names="Framework", | |
) | |
st.plotly_chart(fig, use_container_width=True) | |
st.divider() | |
st.markdown("### Models") | |
st.dataframe(models, use_container_width=True) | |
def accuracy_view(data: pd.DataFrame, models_to_plot: set[str]): | |
data_to_plot = data[data["model"].isin(models_to_plot)].sort_values( | |
by="model", ascending=True | |
) | |
left, right = st.columns(2, gap="small") | |
with left: | |
metric = st.selectbox("Metric", ["MAE", "RMSE", "MBE", "rMAE"], index=0) | |
with right: | |
aggregation = st.selectbox( | |
"Aggregation", ["min", "mean", "median", "max", "std"], index=1 | |
) | |
st.markdown(f"#### {aggregation.capitalize()} {metric} per building") | |
if data_to_plot.empty: | |
st.warning("No data to display.") | |
else: | |
model_ranks = get_model_ranks(data_to_plot, f"{metric}.{aggregation}") | |
fig = px.box( | |
data_to_plot.merge(model_ranks, on="model").sort_values(by="rank"), | |
x=f"{metric}.{aggregation}", | |
y="model", | |
color="model", | |
points="all", | |
) | |
fig.update_layout(showlegend=False, height=50 * len(models_to_plot)) | |
st.plotly_chart(fig, use_container_width=True) | |
st.divider() | |
left, right = st.columns(2, gap="large") | |
with left: | |
x_metric = st.selectbox( | |
"Metric", ["MAE", "RMSE", "MBE", "rMAE"], index=0, key="x_metric" | |
) | |
x_aggregation = st.selectbox( | |
"Aggregation", | |
["min", "mean", "median", "max", "std"], | |
index=1, | |
key="x_aggregation", | |
) | |
with right: | |
y_metric = st.selectbox( | |
"Aggregation", ["MAE", "RMSE", "MBE", "rMAE"], index=1, key="y_metric" | |
) | |
y_aggregation = st.selectbox( | |
"Aggregation", | |
["min", "mean", "median", "max", "std"], | |
index=1, | |
key="y_aggregation", | |
) | |
st.markdown( | |
f"#### {x_aggregation.capitalize()} {x_metric} vs {y_aggregation.capitalize()} {y_metric}" | |
) | |
if data_to_plot.empty: | |
st.warning("No data to display.") | |
else: | |
fig = px.scatter( | |
data_to_plot, | |
x=f"{x_metric}.{x_aggregation}", | |
y=f"{y_metric}.{y_aggregation}", | |
color="model", | |
) | |
fig.update_layout(height=600) | |
st.plotly_chart(fig, use_container_width=True) | |
st.divider() | |
left, right = st.columns(2, gap="small") | |
with left: | |
metric = st.selectbox( | |
"Metric", ["MAE", "RMSE", "MBE", "rMAE"], index=0, key="table_metric" | |
) | |
with right: | |
aggregation = st.selectbox( | |
"Aggregation across folds", | |
["min", "mean", "median", "max", "std"], | |
index=1, | |
key="table_aggregation", | |
) | |
metrics_table = data_to_plot.groupby(["model"]).agg(aggregation, numeric_only=True)[ | |
[ | |
f"{metric}.min", | |
f"{metric}.mean", | |
f"{metric}.median", | |
f"{metric}.max", | |
f"{metric}.std", | |
] | |
].sort_values(by=f"{metric}.mean") | |
def custom_table(styler): | |
styler.background_gradient(cmap="seismic", axis=0) | |
styler.format(precision=2) | |
# center text and increase font size | |
styler.map(lambda x: "text-align: center; font-size: 14px;") | |
return styler | |
st.markdown(f"#### {aggregation.capitalize()} {metric} stats per model") | |
styled_table = metrics_table.style.pipe(custom_table) | |
st.dataframe(styled_table, use_container_width=True) | |
metrics_per_building_table = ( | |
data_to_plot.groupby(["model", "unique_id"]) | |
.apply(aggregation, numeric_only=True) | |
.reset_index() | |
.pivot(index="model", columns="unique_id", values=f"{metric}.{aggregation}") | |
) | |
metrics_per_building_table.insert( | |
0, "mean", metrics_per_building_table.mean(axis=1) | |
) | |
metrics_per_building_table = metrics_per_building_table.sort_values(by="mean").drop(columns="mean") | |
def custom_table(styler: Styler): | |
styler.background_gradient(cmap="seismic", axis=None) | |
styler.format(precision=2) | |
# center text and increase font size | |
styler.map(lambda x: "text-align: center; font-size: 14px;") | |
return styler | |
st.markdown(f"#### {aggregation.capitalize()} {metric} stats per building") | |
styled_table = metrics_per_building_table.style.pipe(custom_table) | |
st.dataframe(styled_table, use_container_width=True) | |
def relative_performance_view(data: pd.DataFrame, models_to_plot: set[str]): | |
data_to_plot = data[data["model"].isin(models_to_plot)].sort_values( | |
by="model", ascending=True | |
) | |
st.markdown("#### Relative performance") | |
if data_to_plot.empty: | |
st.warning("No data to display.") | |
else: | |
baseline_choices = sorted( | |
data.filter(like="better_than") | |
.columns.str.removeprefix("better_than.") | |
.tolist() | |
) | |
if len(baseline_choices) > 1: | |
better_than_baseline = st.selectbox("Baseline model", options=baseline_choices) | |
else: | |
better_than_baseline = baseline_choices[0] | |
data_to_plot.loc[:, f"better_than.{better_than_baseline}.percentage"] = ( | |
pd.json_normalize(data_to_plot[f"better_than.{better_than_baseline}"])[ | |
"percentage" | |
].values | |
* 100 | |
) | |
model_rank = get_model_ranks(data_to_plot, f"better_than.{better_than_baseline}.percentage") | |
fig = px.box( | |
data_to_plot.merge(model_rank).sort_values(by="rank"), | |
x=f"better_than.{better_than_baseline}.percentage", | |
y="model", | |
points="all", | |
) | |
fig.update_xaxes(range=[0, 100], title_text="Better than baseline (%)") | |
fig.update_layout( | |
showlegend=False, | |
height=50 * len(models_to_plot), | |
title=f"Better than {better_than_baseline} on % of days per building", | |
) | |
st.plotly_chart(fig, use_container_width=True) | |
def computation_view(data: pd.DataFrame, models_to_plot: set[str]): | |
data_to_plot = data[data["model"].isin(models_to_plot)].sort_values( | |
by="model", ascending=True | |
) | |
data_to_plot["resource_usage.CPU"] /= 3600 | |
st.markdown("#### Computational Resources") | |
left, center, right = st.columns(3, gap="small") | |
with left: | |
metric = st.selectbox("Metric", ["MAE", "RMSE", "MBE", "rMAE"], index=0) | |
with center: | |
aggregation_per_building = st.selectbox( | |
"Aggregation per building", ["min", "mean", "median", "max", "std"], index=1 | |
) | |
with right: | |
aggregation_per_model = st.selectbox( | |
"Aggregation per model", ["min", "mean", "median", "max", "std"], index=1 | |
) | |
st.markdown( | |
f"#### {aggregation_per_model.capitalize()} {aggregation_per_building.capitalize()} {metric} vs CPU usage" | |
) | |
if data_to_plot.empty: | |
st.warning("No data to display.") | |
else: | |
aggregated_data = ( | |
data_to_plot.groupby("model") | |
.agg(aggregation_per_building, numeric_only=True) | |
.reset_index() | |
) | |
fig = px.scatter( | |
aggregated_data, | |
x="resource_usage.CPU", | |
y=f"{metric}.{aggregation_per_model}", | |
color="model", | |
log_x=True, | |
) | |
fig.update_layout(height=600) | |
fig.update_xaxes(title_text="CPU usage (hours)") | |
fig.update_yaxes( | |
title_text=f"{metric} ({aggregation_per_building}, {aggregation_per_model})" | |
) | |
st.plotly_chart(fig, use_container_width=True) | |
st.divider() | |
st.markdown("#### Computational time vs historical data") | |
if data_to_plot.empty: | |
st.warning("No data to display.") | |
else: | |
fig = px.scatter( | |
data_to_plot, | |
x="dataset.available_history.observations", | |
y="resource_usage.CPU", | |
color="model", | |
trendline="ols", | |
hover_data=["model", "unique_id"], | |
) | |
fig.update_layout(height=600) | |
fig.update_xaxes(title_text="Available historical observations (#)") | |
fig.update_yaxes(title_text="CPU usage (hours)") | |
st.plotly_chart(fig, use_container_width=True) | |