Spaces:
Sleeping
Sleeping
import pandas as pd | |
import wandb | |
def get_wandb_data( | |
entity: str, project: str, api_key: str, job_type: str | |
) -> pd.DataFrame: | |
api = wandb.Api(api_key=api_key) | |
# Project is specified by <entity/project-name> | |
filter_dict = {"jobType": job_type} | |
runs = api.runs(f"{entity}/{project}", filters=filter_dict) | |
summary_list, config_list, name_list = [], [], [] | |
for run in runs: | |
# .summary contains the output keys/values for metrics like accuracy. | |
# We call ._json_dict to omit large files | |
summary_list.append(run.summary._json_dict) | |
# .config contains the hyperparameters. | |
# We remove special values that start with _. | |
config_list.append(run.config) | |
# .name is the human-readable name of the run. | |
name_list.append(run.name) | |
summary_df = pd.json_normalize(summary_list, max_level=1) | |
config_df = pd.json_normalize(config_list, max_level=2) | |
runs_df = pd.concat([summary_df, config_df], axis=1) | |
runs_df.index = name_list | |
return runs_df | |
def get_leaderboard(runs_df: pd.DataFrame, metrics: list[str]) -> pd.DataFrame: | |
leaderboard = pd.DataFrame(index=runs_df["model"].unique(), columns=metrics).fillna( | |
0 | |
) | |
for _, building_df in runs_df.groupby("unique_id"): | |
for column in leaderboard.columns: | |
best_model = building_df.loc[building_df[column].idxmin()].model | |
leaderboard.loc[best_model, column] += 1 | |
leaderboard = leaderboard.sort_values(by=list(leaderboard.columns), ascending=False) | |
return leaderboard | |
def get_model_ranks(runs_df: pd.DataFrame, metric: str) -> pd.DataFrame: | |
return ( | |
runs_df.groupby(["model"]) | |
.median(numeric_only=True) | |
.sort_values(by=metric) | |
.reset_index() | |
.rename_axis("rank") | |
.reset_index()[["rank", "model"]] | |
) | |