import pandas as pd import plotly.express as px import streamlit as st from pandas.io.formats.style import Styler from utils import get_leaderboard, get_model_ranks def header(title: str) -> None: st.title(title) st.markdown( """ [EnFoBench](https://github.com/attila-balint-kul/energy-forecast-benchmark-toolkit) is a community driven benchmarking framework for energy forecasting models. """ ) st.divider() def logos() -> None: left, right = st.columns(2) with left: st.image("./images/ku_leuven_logo.png") with right: st.image("./images/energyville_logo.png") def links(current: str) -> None: st.header("Sources") st.link_button( "GitHub Repository", url="https://github.com/attila-balint-kul/energy-forecast-benchmark-toolkit", use_container_width=True, ) st.link_button( "Documentation", url="https://attila-balint-kul.github.io/energy-forecast-benchmark-toolkit/", use_container_width=True, ) st.link_button( "Electricity Demand Dataset", url="https://huggingface.co/datasets/EDS-lab/electricity-demand", use_container_width=True, ) st.link_button( "HuggingFace Organization", url="https://huggingface.co/EDS-lab", use_container_width=True, ) st.header("Other Dashboards") if current != "ElectricityDemand": st.link_button( "Electricity Demand", url="https://huggingface.co/spaces/EDS-lab/EnFoBench-ElectricityDemand", use_container_width=True, ) if current != "GasDemand": st.link_button( "Gas Demand", url="https://huggingface.co/spaces/EDS-lab/EnFoBench-GasDemand", use_container_width=True, ) if current != "PVGeneration": st.link_button( "PVGeneration", url="https://huggingface.co/spaces/EDS-lab/EnFoBench-PVGeneration", use_container_width=True, ) def model_selector(models: list[str], data: pd.DataFrame) -> set[str]: # Group models by their prefix model_groups: dict[str, list[str]] = {} for model in models: group, model_name = model.split(".", maxsplit=1) if group not in model_groups: model_groups[group] = [] model_groups[group].append(model_name) models_to_plot = set() st.header("Models to include") left, middle, right = st.columns(3) with left: best_by_mae = st.button("Best by MAE", use_container_width=True) if best_by_mae: best_models_by_mae = get_model_ranks(data, "MAE.mean").head(10).model.tolist() for model in models: if model in best_models_by_mae: st.session_state[model] = True else: st.session_state[model] = False with middle: best_by_rmse = st.button("Best by RMSE", use_container_width=True) if best_by_rmse: best_models_by_rmse = get_model_ranks(data, "RMSE.mean").head(10).model.tolist() for model in models: if model in best_models_by_rmse: st.session_state[model] = True else: st.session_state[model] = False with right: best_by_rmae = st.button("Best by rMAE", use_container_width=True) if best_by_rmae: best_models_by_rmae = get_model_ranks(data, "rMAE.mean").head(10).model.tolist() for model in models: if model in best_models_by_rmae: st.session_state[model] = True else: st.session_state[model] = False left, right = st.columns(2) with left: select_none = st.button("Select None", use_container_width=True) if select_none: for model in models: st.session_state[model] = False with right: select_all = st.button("Select All", use_container_width=True) if select_all: for model in models: st.session_state[model] = True for model_group, models in model_groups.items(): st.text(model_group) for model_name in models: to_plot = st.checkbox( model_name, value=True, key=f"{model_group}.{model_name}" ) if to_plot: models_to_plot.add(f"{model_group}.{model_name}") return models_to_plot def overview_view(data: pd.DataFrame): st.markdown("## Leaderboard") leaderboard = get_leaderboard(data, ["MAE.mean", "RMSE.mean", "rMAE.mean"]) left, middle, right = st.columns(3) with left: best_models_mae = ( leaderboard.sort_values("MAE.mean", ascending=False) .head(10) .sort_values("MAE.mean") ) fig = px.bar(best_models_mae, x="MAE.mean", y=best_models_mae.index) fig.update_layout( title="Top 10 models by MAE", xaxis_title="", yaxis_title="Model", height=600, ) st.plotly_chart(fig, use_container_width=True) with middle: best_models_mae = ( leaderboard.sort_values("RMSE.mean", ascending=False) .head(10) .sort_values("RMSE.mean") ) fig = px.bar(best_models_mae, x="RMSE.mean", y=best_models_mae.index) fig.update_layout( title="Top 10 models by RMSE", xaxis_title="", yaxis_title="", height=600 ) st.plotly_chart(fig, use_container_width=True) with right: best_models_mae = ( leaderboard.sort_values("rMAE.mean", ascending=False) .head(10) .sort_values("rMAE.mean") ) fig = px.bar(best_models_mae, x="rMAE.mean", y=best_models_mae.index) fig.update_layout( title="Top 10 models by rMAE", xaxis_title="", yaxis_title="", height=600 ) st.plotly_chart(fig, use_container_width=True) st.dataframe(leaderboard, use_container_width=True) def buildings_view(data: pd.DataFrame): if 'metadata.cluster_size' not in data.columns: data['metadata.cluster_size'] = 1 if 'metadata.building_class' not in data.columns: data['metadata.building_class'] = "Unknown" buildings = ( data[ [ "unique_id", "metadata.cluster_size", "metadata.building_class", "metadata.location_id", "metadata.timezone", "dataset.available_history.days", "dataset.available_history.observations", "metadata.freq", ] ] .groupby("unique_id") .first() .rename( columns={ "metadata.cluster_size": "Cluster size", "metadata.building_class": "Building class", "metadata.location_id": "Location ID", "metadata.timezone": "Timezone", "dataset.available_history.days": "Available history (days)", "dataset.available_history.observations": "Available history (#)", "metadata.freq": "Frequency", } ) ) left, middle, right = st.columns(3) with left: st.metric("Number of buildings", data["unique_id"].nunique()) with middle: st.metric( "Residential", data[data["metadata.building_class"] == "Residential"][ "unique_id" ].nunique(), ) with right: st.metric( "Commercial", data[data["metadata.building_class"] == "Commercial"][ "unique_id" ].nunique(), ) st.divider() left, middle, right = st.columns(3, gap="large") with left: st.markdown("#### Building classes") fig = px.pie( buildings.groupby("Building class").size().reset_index(), values=0, names="Building class", ) fig.update_layout( legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1) ) st.plotly_chart(fig, use_container_width=True) with middle: st.markdown("#### Timezones") fig = px.pie( buildings.groupby("Timezone").size().reset_index(), values=0, names="Timezone", ) fig.update_layout( legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1) ) st.plotly_chart(fig, use_container_width=True) with right: st.markdown("#### Frequencies") fig = px.pie( buildings.groupby("Frequency").size().reset_index(), values=0, names="Frequency", ) fig.update_layout( legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1) ) st.plotly_chart(fig, use_container_width=True) st.divider() st.markdown("#### Buildings") st.dataframe( buildings.sort_values("Available history (days)"), use_container_width=True, column_config={ "Available history (days)": st.column_config.ProgressColumn( "Available history (days)", help="Available training data during the first prediction.", format="%f", min_value=0, max_value=float(buildings["Available history (days)"].max()), ), "Available history (#)": st.column_config.ProgressColumn( "Available history (#)", help="Available training data during the first prediction.", format="%f", min_value=0, max_value=float(buildings["Available history (#)"].max()), ), }, ) def models_view(data: pd.DataFrame): models = ( data[ [ "model", "cv_config.folds", "cv_config.horizon", "cv_config.step", "cv_config.time", "model_info.repository", "model_info.tag", "model_info.variate_type", ] ] .groupby("model") .first() .rename( columns={ "cv_config.folds": "CV Folds", "cv_config.horizon": "CV Horizon", "cv_config.step": "CV Step", "cv_config.time": "CV Time", "model_info.repository": "Image Repository", "model_info.tag": "Image Tag", "model_info.variate_type": "Variate type", } ) ) left, middle, right = st.columns(3) with left: st.metric("Models", len(models)) with middle: st.metric( "Univariate", data[data["model_info.variate_type"] == "univariate"]["model"].nunique(), ) with right: st.metric( "Univariate", data[data["model_info.variate_type"] == "multivariate"]["model"].nunique(), ) st.divider() left, right = st.columns(2, gap="large") with left: st.markdown("#### Variate types") fig = px.pie( models.groupby("Variate type").size().reset_index(), values=0, names="Variate type", ) st.plotly_chart(fig, use_container_width=True) with right: st.markdown("#### Frameworks") _df = models.copy() _df["Framework"] = _df.index.str.split(".").str[0] fig = px.pie( _df.groupby("Framework").size().reset_index(), values=0, names="Framework", ) st.plotly_chart(fig, use_container_width=True) st.divider() st.markdown("### Models") st.dataframe(models, use_container_width=True) def accuracy_view(data: pd.DataFrame, models_to_plot: set[str]): data_to_plot = data[data["model"].isin(models_to_plot)].sort_values( by="model", ascending=True ) left, right = st.columns(2, gap="small") with left: metric = st.selectbox("Metric", ["MAE", "RMSE", "MBE", "rMAE"], index=0) with right: aggregation = st.selectbox( "Aggregation", ["min", "mean", "median", "max", "std"], index=1 ) st.markdown(f"#### {aggregation.capitalize()} {metric} per building") if data_to_plot.empty: st.warning("No data to display.") else: model_ranks = get_model_ranks(data_to_plot, f"{metric}.{aggregation}") fig = px.box( data_to_plot.merge(model_ranks, on="model").sort_values(by="rank"), x=f"{metric}.{aggregation}", y="model", color="model", points="all", ) fig.update_layout(showlegend=False, height=50 * len(models_to_plot)) st.plotly_chart(fig, use_container_width=True) st.divider() left, right = st.columns(2, gap="large") with left: x_metric = st.selectbox( "Metric", ["MAE", "RMSE", "MBE", "rMAE"], index=0, key="x_metric" ) x_aggregation = st.selectbox( "Aggregation", ["min", "mean", "median", "max", "std"], index=1, key="x_aggregation", ) with right: y_metric = st.selectbox( "Aggregation", ["MAE", "RMSE", "MBE", "rMAE"], index=1, key="y_metric" ) y_aggregation = st.selectbox( "Aggregation", ["min", "mean", "median", "max", "std"], index=1, key="y_aggregation", ) st.markdown( f"#### {x_aggregation.capitalize()} {x_metric} vs {y_aggregation.capitalize()} {y_metric}" ) if data_to_plot.empty: st.warning("No data to display.") else: fig = px.scatter( data_to_plot, x=f"{x_metric}.{x_aggregation}", y=f"{y_metric}.{y_aggregation}", color="model", ) fig.update_layout(height=600) st.plotly_chart(fig, use_container_width=True) st.divider() left, right = st.columns(2, gap="small") with left: metric = st.selectbox( "Metric", ["MAE", "RMSE", "MBE", "rMAE"], index=0, key="table_metric" ) with right: aggregation = st.selectbox( "Aggregation across folds", ["min", "mean", "median", "max", "std"], index=1, key="table_aggregation", ) metrics_table = data_to_plot.groupby(["model"]).agg(aggregation, numeric_only=True)[ [ f"{metric}.min", f"{metric}.mean", f"{metric}.median", f"{metric}.max", f"{metric}.std", ] ].sort_values(by=f"{metric}.mean") def custom_table(styler): styler.background_gradient(cmap="seismic", axis=0) styler.format(precision=2) # center text and increase font size styler.map(lambda x: "text-align: center; font-size: 14px;") return styler st.markdown(f"#### {aggregation.capitalize()} {metric} stats per model") styled_table = metrics_table.style.pipe(custom_table) st.dataframe(styled_table, use_container_width=True) metrics_per_building_table = ( data_to_plot.groupby(["model", "unique_id"]) .apply(aggregation, numeric_only=True) .reset_index() .pivot(index="model", columns="unique_id", values=f"{metric}.{aggregation}") ) metrics_per_building_table.insert( 0, "mean", metrics_per_building_table.mean(axis=1) ) metrics_per_building_table = metrics_per_building_table.sort_values(by="mean").drop(columns="mean") def custom_table(styler: Styler): styler.background_gradient(cmap="seismic", axis=None) styler.format(precision=2) # center text and increase font size styler.map(lambda x: "text-align: center; font-size: 14px;") return styler st.markdown(f"#### {aggregation.capitalize()} {metric} stats per building") styled_table = metrics_per_building_table.style.pipe(custom_table) st.dataframe(styled_table, use_container_width=True) def relative_performance_view(data: pd.DataFrame, models_to_plot: set[str]): data_to_plot = data[data["model"].isin(models_to_plot)].sort_values( by="model", ascending=True ) st.markdown("#### Relative performance") if data_to_plot.empty: st.warning("No data to display.") else: baseline_choices = sorted( data.filter(like="better_than") .columns.str.removeprefix("better_than.") .tolist() ) if len(baseline_choices) > 1: better_than_baseline = st.selectbox("Baseline model", options=baseline_choices) else: better_than_baseline = baseline_choices[0] data_to_plot.loc[:, f"better_than.{better_than_baseline}.percentage"] = ( pd.json_normalize(data_to_plot[f"better_than.{better_than_baseline}"])[ "percentage" ].values * 100 ) model_rank = get_model_ranks(data_to_plot, f"better_than.{better_than_baseline}.percentage") fig = px.box( data_to_plot.merge(model_rank).sort_values(by="rank"), x=f"better_than.{better_than_baseline}.percentage", y="model", points="all", ) fig.update_xaxes(range=[0, 100], title_text="Better than baseline (%)") fig.update_layout( showlegend=False, height=50 * len(models_to_plot), title=f"Better than {better_than_baseline} on % of days per building", ) st.plotly_chart(fig, use_container_width=True) def computation_view(data: pd.DataFrame, models_to_plot: set[str]): data_to_plot = data[data["model"].isin(models_to_plot)].sort_values( by="model", ascending=True ) data_to_plot["resource_usage.CPU"] /= 3600 st.markdown("#### Computational Resources") left, center, right = st.columns(3, gap="small") with left: metric = st.selectbox("Metric", ["MAE", "RMSE", "MBE", "rMAE"], index=0) with center: aggregation_per_building = st.selectbox( "Aggregation per building", ["min", "mean", "median", "max", "std"], index=1 ) with right: aggregation_per_model = st.selectbox( "Aggregation per model", ["min", "mean", "median", "max", "std"], index=1 ) st.markdown( f"#### {aggregation_per_model.capitalize()} {aggregation_per_building.capitalize()} {metric} vs CPU usage" ) if data_to_plot.empty: st.warning("No data to display.") else: aggregated_data = ( data_to_plot.groupby("model") .agg(aggregation_per_building, numeric_only=True) .reset_index() ) fig = px.scatter( aggregated_data, x="resource_usage.CPU", y=f"{metric}.{aggregation_per_model}", color="model", log_x=True, ) fig.update_layout(height=600) fig.update_xaxes(title_text="CPU usage (hours)") fig.update_yaxes( title_text=f"{metric} ({aggregation_per_building}, {aggregation_per_model})" ) st.plotly_chart(fig, use_container_width=True) st.divider() st.markdown("#### Computational time vs historical data") if data_to_plot.empty: st.warning("No data to display.") else: fig = px.scatter( data_to_plot, x="dataset.available_history.observations", y="resource_usage.CPU", color="model", trendline="ols", hover_data=["model", "unique_id"], ) fig.update_layout(height=600) fig.update_xaxes(title_text="Available historical observations (#)") fig.update_yaxes(title_text="CPU usage (hours)") st.plotly_chart(fig, use_container_width=True)