Spaces:
Running
Running
File size: 47,584 Bytes
615e9f1 b76c717 615e9f1 cc79c19 ca37b38 cc79c19 ca37b38 615e9f1 64b088f 27a202c 615e9f1 27a202c 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f 615e9f1 9134c9f 615e9f1 9134c9f 64b088f 615e9f1 9134c9f 64b088f 615e9f1 64b088f ca37b38 64b088f 7440d31 64b088f ca37b38 7440d31 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f e49e1d2 615e9f1 acc7969 ca37b38 64b088f 615e9f1 acc7969 ca37b38 acc7969 3a0ed7b 615e9f1 cc79c19 615e9f1 3a0ed7b 615e9f1 ca37b38 615e9f1 3a0ed7b 615e9f1 3a0ed7b 0295c5d 3a0ed7b cc79c19 2b81555 cc79c19 6ceb9bd cc79c19 615e9f1 e7657c7 acc7969 615e9f1 64b088f 615e9f1 64b088f 615e9f1 2d1db93 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f b506342 64b088f b506342 cc79c19 b506342 615e9f1 b506342 9134c9f b506342 615e9f1 b506342 9134c9f 615e9f1 b506342 615e9f1 b506342 85cd155 b506342 85cd155 cc79c19 b506342 cc79c19 85cd155 615e9f1 64b088f ca37b38 64b088f ca37b38 64b088f ca37b38 6ceb9bd 64b088f 615e9f1 64b088f 6ceb9bd acc7969 b0e8a9d 615e9f1 6ceb9bd 615e9f1 64b088f 6ceb9bd 00a4c90 64b088f 6ceb9bd 2b81555 615e9f1 6ceb9bd cc79c19 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f 2b81555 64b088f 5f3e9f4 cc79c19 615e9f1 ca37b38 615e9f1 ca37b38 64b088f ca37b38 64b088f ca37b38 64b088f 615e9f1 ca37b38 615e9f1 6ceb9bd 615e9f1 64b088f 615e9f1 64b088f 615e9f1 00a4c90 6ceb9bd 64b088f 00a4c90 fc2d014 64b088f 00a4c90 fc2d014 64b088f 6ceb9bd 00a4c90 cc79c19 64b088f ca37b38 cc79c19 64b088f 00a4c90 64b088f 00a4c90 64b088f 00a4c90 615e9f1 64b088f 615e9f1 27a202c 615e9f1 cc79c19 615e9f1 cc79c19 64b088f cc79c19 615e9f1 00a4c90 6ceb9bd 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f 615e9f1 64b088f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 |
import numpy as np
import torch
from modules.utils import class_dict, object_dict, arrow_dict, find_closest_object, find_other_keypoint, filter_overlap_boxes, iou
from tqdm import tqdm
from modules.toXML import get_size_elements, calculate_pool_bounds, create_BPMN_id
from modules.utils import is_vertical, proportion_inside
import streamlit as st
from builtins import dict
def non_maximum_suppression(boxes, scores, labels=None, iou_threshold=0.5):
"""
Perform non-maximum suppression to filter out overlapping bounding boxes.
Parameters:
- boxes (array): Array of bounding boxes.
- scores (array): Array of confidence scores for each bounding box.
- labels (array, optional): Array of labels for each bounding box.
- iou_threshold (float): Intersection-over-Union threshold to use for filtering.
Returns:
- list: Indices of selected boxes after suppression.
"""
exception = ['pool', 'lane']
idxs = np.argsort(scores) # Sort the boxes according to their scores in ascending order
selected_boxes = []
while len(idxs) > 0:
last = len(idxs) - 1
i = idxs[last]
# Skip if the label is a lane
if labels is not None and (class_dict[labels[i]] in exception):
selected_boxes.append(i)
idxs = np.delete(idxs, last)
continue
selected_boxes.append(i)
# Find the intersection of the box with the rest
suppress = [last]
for pos in range(0, last):
j = idxs[pos]
if iou(boxes[i], boxes[j]) > iou_threshold:
suppress.append(pos)
idxs = np.delete(idxs, suppress)
# Return only the boxes that were selected
return selected_boxes
def keypoint_correction(keypoints, boxes, labels, model_dict=arrow_dict, distance_treshold=15):
"""
Correct keypoints that are too close together by adjusting their positions.
Parameters:
- keypoints (array): Array of keypoints.
- boxes (array): Array of bounding boxes.
- labels (array): Array of labels for each bounding box.
- model_dict (dict): Dictionary mapping model labels to indices.
- distance_treshold (int): Distance threshold below which keypoints are considered too close.
Returns:
- array: Corrected keypoints.
"""
for idx, (key1, key2) in enumerate(keypoints):
if labels[idx] not in [list(model_dict.values()).index('sequenceFlow'),
list(model_dict.values()).index('messageFlow'),
list(model_dict.values()).index('dataAssociation')]:
continue
# Calculate the Euclidean distance between the two keypoints
distance = np.linalg.norm(key1[:2] - key2[:2])
if distance < distance_treshold:
print('Key modified for index:', idx)
x_new, y_new, x, y = find_other_keypoint(idx, keypoints, boxes)
keypoints[idx][0][:2] = [x_new, y_new]
keypoints[idx][1][:2] = [x, y]
return keypoints
def object_prediction(model, image, score_threshold=0.5, iou_threshold=0.5):
"""
Perform object detection prediction using the model.
Parameters:
- model (torch.nn.Module): The object detection model.
- image (torch.Tensor): The input image.
- score_threshold (float): Score threshold for filtering predictions.
- iou_threshold (float): IoU threshold for non-maximum suppression.
Returns:
- numpy.array, dict: The processed image and the prediction dictionary containing 'boxes', 'scores', and 'labels'.
"""
model.eval()
with torch.no_grad():
image_tensor = image.unsqueeze(0).to(torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu'))
predictions = model(image_tensor)
boxes = predictions[0]['boxes'].cpu().numpy()
labels = predictions[0]['labels'].cpu().numpy()
scores = predictions[0]['scores'].cpu().numpy()
idx = np.where(scores > score_threshold)[0]
boxes = boxes[idx]
scores = scores[idx]
labels = labels[idx]
selected_boxes = non_maximum_suppression(boxes, scores, labels=labels, iou_threshold=iou_threshold)
# Find orientation of the task by checking the size of all the boxes and delete the ones that are not in the same orientation
vertical = 0
for i in range(len(labels)):
if labels[i] != list(object_dict.values()).index('task'):
continue
if is_vertical(boxes[i]):
vertical += 1
horizontal = len(labels) - vertical
for i in range(len(labels)):
if labels[i] != list(object_dict.values()).index('task'):
continue
if vertical < horizontal:
if is_vertical(boxes[i]):
# Find the element in the list and remove it
if i in selected_boxes:
selected_boxes.remove(i)
elif vertical > horizontal:
if is_vertical(boxes[i]) == False:
# Find the element in the list and remove it
if i in selected_boxes:
selected_boxes.remove(i)
else:
pass
boxes = boxes[selected_boxes]
scores = scores[selected_boxes]
labels = labels[selected_boxes]
# Find the outlier objects that are too small by the area
obj_not_too_small = find_outlier_objects_by_area(boxes, labels, class_dict, std_factor=1.5, element_ref=['event', 'messageEvent'], mode="lower")
obj_not_too_big = find_outlier_objects_by_area(boxes, labels, class_dict, std_factor=2, element_ref=['task'], mode="upper")
selected_object = [i for i in range(len(labels)) if i in obj_not_too_small and i in obj_not_too_big]
boxes = boxes[selected_object]
scores = scores[selected_object]
labels = labels[selected_object]
# Modify the label of the sub-process to task
for i in range(len(labels)):
if labels[i] == list(object_dict.values()).index('subProcess'):
labels[i] = list(object_dict.values()).index('task')
# Delete all lane and also the value in the labels and scores
lane_index = [i for i in range(len(labels)) if labels[i] == list(object_dict.values()).index('lane')]
boxes = np.delete(boxes, lane_index, axis=0)
labels = np.delete(labels, lane_index)
scores = np.delete(scores, lane_index)
prediction = {
'boxes': boxes,
'scores': scores,
'labels': labels,
}
image = image.permute(1, 2, 0).cpu().numpy()
image = (image * 255).astype(np.uint8)
return image, prediction
def arrow_prediction(model, image, score_threshold=0.5, iou_threshold=0.5, distance_treshold=15):
"""
Perform arrow detection prediction using the model.
Parameters:
- model (torch.nn.Module): The arrow detection model.
- image (torch.Tensor): The input image.
- score_threshold (float): Score threshold for filtering predictions.
- iou_threshold (float): IoU threshold for non-maximum suppression.
- distance_treshold (int): Distance threshold for keypoint correction.
Returns:
- numpy.array, dict: The processed image and the prediction dictionary containing 'boxes', 'scores', 'labels', and 'keypoints'.
"""
model.eval()
with torch.no_grad():
image_tensor = image.unsqueeze(0).to(torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu'))
predictions = model(image_tensor)
boxes = predictions[0]['boxes'].cpu().numpy()
labels = predictions[0]['labels'].cpu().numpy() + (len(object_dict) - 1)
scores = predictions[0]['scores'].cpu().numpy()
keypoints = predictions[0]['keypoints'].cpu().numpy()
idx = np.where(scores > score_threshold)[0]
boxes = boxes[idx]
scores = scores[idx]
labels = labels[idx]
keypoints = keypoints[idx]
selected_boxes = non_maximum_suppression(boxes, scores, iou_threshold=iou_threshold)
boxes = boxes[selected_boxes]
scores = scores[selected_boxes]
labels = labels[selected_boxes]
keypoints = keypoints[selected_boxes]
keypoints = keypoint_correction(keypoints, boxes, labels, class_dict, distance_treshold=distance_treshold)
prediction = {
'boxes': boxes,
'scores': scores,
'labels': labels,
'keypoints': keypoints,
}
image = image.permute(1, 2, 0).cpu().numpy()
image = (image * 255).astype(np.uint8)
return image, prediction
def mix_predictions(objects_pred, arrow_pred):
"""
Combine object and arrow predictions into a single set of predictions.
Parameters:
- objects_pred (dict): Object predictions dictionary.
- arrow_pred (dict): Arrow predictions dictionary.
Returns:
- tuple: Combined boxes, labels, scores, and keypoints.
"""
# Initialize the list of lists for keypoints
object_keypoints = []
# Number of boxes
num_boxes = len(objects_pred['boxes'])
# Iterate over the number of boxes
for _ in range(num_boxes):
# Each box has 2 keypoints, both initialized to [0, 0, 0]
keypoints = [[0, 0, 0], [0, 0, 0]]
object_keypoints.append(keypoints)
# Concatenate the two predictions
if len(arrow_pred['boxes']) == 0:
return objects_pred['boxes'], objects_pred['labels'], objects_pred['scores'], object_keypoints
boxes = np.concatenate((objects_pred['boxes'], arrow_pred['boxes']))
labels = np.concatenate((objects_pred['labels'], arrow_pred['labels']))
scores = np.concatenate((objects_pred['scores'], arrow_pred['scores']))
keypoints = np.concatenate((object_keypoints, arrow_pred['keypoints']))
return boxes, labels, scores, keypoints
def regroup_elements_by_pool(boxes, labels, scores, keypoints, class_dict, iou_threshold=0.6):
"""
Regroup elements by pool based on IoU and proximity.
Parameters:
- boxes (array): Array of bounding boxes.
- labels (array): Array of labels for each bounding box.
- scores (array): Array of confidence scores for each bounding box.
- keypoints (array): Array of keypoints.
- class_dict (dict): Dictionary mapping class names to indices.
- iou_threshold (float): IoU threshold for grouping.
Returns:
- dict: Dictionary grouping elements by pool.
- array: Updated arrays of boxes, labels, scores, and keypoints.
"""
pool_dict = {}
# Filter out pools with IoU greater than the threshold
to_delete = []
for i in range(len(boxes)):
for j in range(i + 1, len(boxes)):
if labels[i] == labels[j] and labels[i] == list(class_dict.values()).index('pool'):
if proportion_inside(boxes[i], boxes[j]) > iou_threshold:
to_delete.append(j)
boxes = np.delete(boxes, to_delete, axis=0)
labels = np.delete(labels, to_delete)
scores = np.delete(scores, to_delete)
keypoints = np.delete(keypoints, to_delete, axis=0)
pool_indices = [i for i, label in enumerate(labels) if class_dict[label.item()] == 'pool']
pool_boxes = [boxes[i] for i in pool_indices]
if pool_indices:
for pool_index in pool_indices:
pool_dict[pool_index] = []
elements_not_in_pool = []
for i, box in enumerate(boxes):
assigned_to_pool = False
if i in pool_indices or class_dict[labels[i]] in ['messageFlow', 'pool']:
continue
for j, pool_box in enumerate(pool_boxes):
if proportion_inside(box, pool_box) > iou_threshold:
pool_index = pool_indices[j]
pool_dict[pool_index].append(i)
assigned_to_pool = True
break
if not assigned_to_pool:
if class_dict[labels[i]] not in ['messageFlow', 'lane', 'pool']:
elements_not_in_pool.append(i)
if len(elements_not_in_pool) > 1:
new_elements_not_in_pool = [i for i in elements_not_in_pool if class_dict[labels[i]] not in ['messageFlow', 'lane', 'pool']]
# Indices of relevant classes
sequence_flow_index = list(class_dict.values()).index('sequenceFlow')
message_flow_index = list(class_dict.values()).index('messageFlow')
data_association_index = list(class_dict.values()).index('dataAssociation')
if all(labels[i] in {sequence_flow_index, message_flow_index, data_association_index} for i in new_elements_not_in_pool):
print('The new pool contains only sequenceFlow, messageFlow, or dataAssociation')
elif len(new_elements_not_in_pool) > 1:
new_pool_index = len(labels)
box = calculate_pool_bounds(boxes, labels, new_elements_not_in_pool, None)
boxes = np.append(boxes, [box], axis=0)
labels = np.append(labels, list(class_dict.values()).index('pool'))
scores = np.append(scores, 1.0)
keypoints = np.append(keypoints, np.zeros((1, 2, 3)), axis=0)
pool_dict[new_pool_index] = new_elements_not_in_pool
print(f"Created a new pool index {new_pool_index} with elements: {new_elements_not_in_pool}")
non_empty_pools = {k: v for k, v in pool_dict.items() if v}
empty_pools = {k: v for k, v in pool_dict.items() if not v}
pool_dict = {**non_empty_pools, **empty_pools}
return pool_dict, boxes, labels, scores, keypoints
def create_links(keypoints, boxes, labels, class_dict):
"""
Create links between elements based on keypoints.
Parameters:
- keypoints (array): Array of keypoints.
- boxes (array): Array of bounding boxes.
- labels (array): Array of labels for each bounding box.
- class_dict (dict): Dictionary mapping class names to indices.
Returns:
- list: List of links between elements.
- list: List of best points for each link.
"""
best_points = []
links = []
for i in range(len(labels)):
if labels[i] == list(class_dict.values()).index('sequenceFlow') or labels[i] == list(class_dict.values()).index('messageFlow'):
closest1, point_start = find_closest_object(keypoints[i][0], boxes, labels)
closest2, point_end = find_closest_object(keypoints[i][1], boxes, labels)
if closest1 is not None and closest2 is not None:
best_points.append([point_start, point_end])
links.append([closest1, closest2])
else:
best_points.append([None, None])
links.append([None, None])
for i in range(len(labels)):
if labels[i] == list(class_dict.values()).index('dataAssociation'):
closest1, point_start = find_closest_object(keypoints[i][0], boxes, labels)
closest2, point_end = find_closest_object(keypoints[i][1], boxes, labels)
if closest1 is not None and closest2 is not None:
best_points[i] = ([point_start, point_end])
links[i] = ([closest1, closest2])
return links, best_points
def correction_labels(boxes, labels, class_dict, pool_dict, flow_links):
"""
Correct labels based on the relationships between elements and pools.
Parameters:
- boxes (array): Array of bounding boxes.
- labels (array): Array of labels for each bounding box.
- class_dict (dict): Dictionary mapping class names to indices.
- pool_dict (dict): Dictionary grouping elements by pool.
- flow_links (list): List of links between elements.
Returns:
- array: Corrected labels.
- list: Updated flow links.
"""
sequence_flow_index = list(class_dict.values()).index('sequenceFlow')
message_flow_index = list(class_dict.values()).index('messageFlow')
data_association_index = list(class_dict.values()).index('dataAssociation')
data_object_index = list(class_dict.values()).index('dataObject')
data_store_index = list(class_dict.values()).index('dataStore')
message_event_index = list(class_dict.values()).index('messageEvent')
senquence_flow_indexx = list(class_dict.values()).index('sequenceFlow')
for pool_index, elements in pool_dict.items():
print(f"Pool {pool_index} contains elements: {elements}")
# Check if the label sequenceFlow or messageFlow is good
for i, (id1, id2) in enumerate(flow_links):
if labels[i] in {sequence_flow_index, message_flow_index}:
if id1 is not None and id2 is not None:
# Check if each link is in the same pool
if id1 in elements and id2 in elements:
# Check if the link is between a dataObject or a dataStore
if labels[id1] in {data_object_index, data_store_index} or labels[id2] in {data_object_index, data_store_index}:
print('Change the link from sequenceFlow/messageFlow to dataAssociation')
labels[i] = data_association_index
else:
continue
elif id1 not in elements and id2 not in elements:
continue
else:
print('Change the link from sequenceFlow to messageFlow')
labels[i] = message_flow_index
# Check if dataAssociation is connected to a dataObject
for i, (id1, id2) in enumerate(flow_links):
if labels[i] == data_association_index:
if id1 is not None and id2 is not None:
label1 = labels[id1]
label2 = labels[id2]
if data_object_index in {label1, label2} or data_store_index in {label1, label2}:
continue
elif message_event_index in {label1, label2}:
print('Change the link from dataAssociation to messageFlow')
labels[i] = message_flow_index
else:
print('Change the link from dataAssociation to sequenceFlow')
labels[i] = senquence_flow_indexx
return labels, flow_links
def find_outlier_objects_by_area(boxes, labels, class_dict, std_factor=1.5, element_ref=['event', 'messageEvent'], mode="lower"):
"""
Identify outlier objects based on their area.
Parameters:
- boxes (array): Array of bounding boxes.
- labels (array): Array of labels for each bounding box.
- class_dict (dict): Dictionary mapping class names to indices.
- std_factor (float): Standard deviation factor for determining outliers.
- element_ref (list): List of reference elements for calculating area statistics.
- mode (str): Mode to identify outliers ('lower', 'upper', or 'both').
Returns:
- list: Indices of kept objects that are not outliers.
"""
# Filter out the sizes of events, data objects, and message events
event_indices = [i for i, label in enumerate(labels) if class_dict[label] in element_ref]
event_boxes = [boxes[i] for i in event_indices]
# Calculate the areas of these typical objects
event_areas = np.array([(box[2] - box[0]) * (box[3] - box[1]) for box in event_boxes])
# Compute the mean and standard deviation for areas
mean_area = np.mean(event_areas)
std_area = np.std(event_areas)
# Define thresholds for outliers
area_lower_threshold = mean_area - std_factor * std_area
area_upper_threshold = mean_area + std_factor * std_area
# Identify indices of outliers and the ones to keep
outlier_indices = []
kept_indices = []
if mode == "lower" or mode == 'both':
# Check for objects that could be too small
for idx, (box, label) in enumerate(zip(boxes, labels)):
area = (box[2] - box[0]) * (box[3] - box[1])
if not (area_lower_threshold <= area):
outlier_indices.append(idx)
print(f"Element {idx} is an outlier with area {area} that is too small")
else:
kept_indices.append(idx)
if mode == "upper" or mode == 'both':
# Check for objects that could be too big
for idx, (box, label) in enumerate(zip(boxes, labels)):
if label == list(class_dict.values()).index('pool') or label == list(class_dict.values()).index('lane'):
kept_indices.append(idx)
continue
area = (box[2] - box[0]) * (box[3] - box[1])
if not (area_upper_threshold >= area):
outlier_indices.append(idx)
print(f"Element {idx} is an outlier with area {area} that is too big")
else:
kept_indices.append(idx)
return kept_indices
def last_correction(boxes, labels, scores, keypoints, bpmn_id, links, best_points, pool_dict, limit_area=10000):
"""
Perform final corrections on the predictions by deleting irrelevant or small pools and duplicate elements.
Parameters:
- boxes (array): Array of bounding boxes.
- labels (array): Array of labels for each bounding box.
- scores (array): Array of confidence scores for each bounding box.
- keypoints (array): Array of keypoints.
- bpmn_id (list): List of BPMN IDs.
- links (list): List of links between elements.
- best_points (list): List of best points for each link.
- pool_dict (dict): Dictionary grouping elements by pool.
- limit_area (int): Minimum area threshold for pools.
Returns:
- tuple: Corrected arrays of boxes, labels, scores, keypoints, BPMN IDs, links, best points, and pool dictionary.
"""
# Delete pools that have only messageFlow on it
delete_pool = []
for pool_index, elements in pool_dict.items():
# Find the position of the pool_index in the bpmn_id
if pool_index in bpmn_id:
position = bpmn_id.index(pool_index)
else:
continue
if all([labels[i] in [list(class_dict.values()).index('messageFlow'),
list(class_dict.values()).index('sequenceFlow'),
list(class_dict.values()).index('dataAssociation'),
list(class_dict.values()).index('lane')] for i in elements]):
if len(elements) > 0:
delete_pool.append(position)
print(f"Pool {pool_index} contains only arrow elements, deleting it")
# Calculate the area of the pool
if position < len(boxes):
pool = boxes[position]
area = (pool[2] - pool[0]) * (pool[3] - pool[1])
if len(pool_dict) > 1 and area < limit_area:
delete_pool.append(position)
print(f"Pool {pool_index} is too small, deleting it")
if is_vertical(boxes[position]):
delete_pool.append(position)
print(f"Pool {position} is vertical, deleting it")
delete_elements = []
# Check if there is an arrow that has the same links
for i in range(len(labels)):
for j in range(i + 1, len(labels)):
if labels[i] == list(class_dict.values()).index('sequenceFlow') and labels[j] == list(class_dict.values()).index('sequenceFlow'):
if links[i] == links[j]:
print(f'Element {i} and {j} have the same links')
if scores[i] > scores[j]:
print('Delete element', j)
delete_elements.append(j)
else:
print('Delete element', i)
delete_elements.append(i)
# Concatenate the delete_elements and the delete_pool
delete_elements = delete_elements + delete_pool
# Delete double value in delete_elements
delete_elements = list(set(delete_elements))
boxes = np.delete(boxes, delete_elements, axis=0)
labels = np.delete(labels, delete_elements)
scores = np.delete(scores, delete_elements)
keypoints = np.delete(keypoints, delete_elements, axis=0)
links = np.delete(links, delete_elements, axis=0)
best_points = [point for i, point in enumerate(best_points) if i not in delete_elements]
for i in range(len(delete_pool)):
# Find the bpmn_id of the pool
pool_index = bpmn_id[delete_pool[i]]
# Delete the pool_index in pool_dict
del pool_dict[pool_index]
bpmn_id = [point for i, point in enumerate(bpmn_id) if i not in delete_elements]
# Also delete the element in the pool_dict
for pool_index, elements in pool_dict.items():
pool_dict[pool_index] = [i for i in elements if i not in delete_elements]
return boxes, labels, scores, keypoints, bpmn_id, links, best_points, pool_dict
def give_link_to_element(links, labels):
"""
Assign links to elements to create BPMN IDs for events.
Parameters:
- links (list): List of links between elements.
- labels (array): Array of labels for each bounding box.
Returns:
- list: Updated list of links with assigned links for events.
"""
# Give a link to event to allow the creation of the BPMN ID with start, intermediate, and end event
for i in range(len(links)):
if labels[i] == list(class_dict.values()).index('sequenceFlow'):
id1, id2 = links[i]
if (id1 and id2) is not None:
links[id1][1] = i
links[id2][0] = i
return links
def generate_data(image, boxes, labels, scores, keypoints, bpmn_id, flow_links, best_points, pool_dict):
"""
Generate a data dictionary containing image and prediction information.
Parameters:
- image (numpy.array): The input image.
- boxes (array): Array of bounding boxes.
- labels (array): Array of labels for each bounding box.
- scores (array): Array of confidence scores for each bounding box.
- keypoints (array): Array of keypoints.
- bpmn_id (list): List of BPMN IDs.
- flow_links (list): List of links between elements.
- best_points (list): List of best points for each link.
- pool_dict (dict): Dictionary grouping elements by pool.
Returns:
- dict: Data dictionary containing all prediction information.
"""
idx = []
for i in range(len(labels)):
idx.append(i)
data = {
'image': image,
'idx': idx,
'boxes': boxes,
'labels': labels,
'scores': scores,
'keypoints': keypoints,
'links': flow_links,
'best_points': best_points,
'pool_dict': pool_dict,
'BPMN_id': bpmn_id,
}
return data
def develop_prediction(boxes, labels, scores, keypoints, class_dict):
"""
Develop predictions by regrouping elements, creating links, and correcting labels.
Parameters:
- boxes (array): Array of bounding boxes.
- labels (array): Array of labels for each bounding box.
- scores (array): Array of confidence scores for each bounding box.
- keypoints (array): Array of keypoints.
- class_dict (dict): Dictionary mapping class names to indices.
Returns:
- tuple: Developed prediction components including boxes, labels, scores, keypoints, BPMN IDs, flow links, best points, and pool dictionary.
"""
pool_dict, boxes, labels, scores, keypoints = regroup_elements_by_pool(boxes, labels, scores, keypoints, class_dict)
bpmn_id, pool_dict = create_BPMN_id(labels, pool_dict)
# Create links between elements
flow_links, best_points = create_links(keypoints, boxes, labels, class_dict)
# Correct the labels of some sequenceFlow that cross multiple pools
labels, flow_links = correction_labels(boxes, labels, class_dict, pool_dict, flow_links)
# Give a link to event to allow the creation of the BPMN ID with start, intermediate, and end event
flow_links = give_link_to_element(flow_links, labels)
boxes, labels, scores, keypoints, bpmn_id, flow_links, best_points, pool_dict = last_correction(
boxes, labels, scores, keypoints, bpmn_id, flow_links, best_points, pool_dict
)
return boxes, labels, scores, keypoints, bpmn_id, flow_links, best_points, pool_dict
def full_prediction(model_object, model_arrow, image, score_threshold=0.5, iou_threshold=0.5, resize=True, distance_treshold=15):
"""
Perform a full prediction by combining object and arrow models and generating data.
Parameters:
- model_object (torch.nn.Module): The object detection model.
- model_arrow (torch.nn.Module): The arrow detection model.
- image (torch.Tensor): The input image.
- score_threshold (float): Score threshold for filtering predictions.
- iou_threshold (float): IoU threshold for non-maximum suppression.
- resize (bool): Flag indicating whether to resize the image.
- distance_treshold (int): Distance threshold for keypoint correction.
Returns:
- numpy.array, dict: The processed image and the data dictionary containing prediction information.
"""
model_object.eval() # Set the model to evaluation mode
model_arrow.eval() # Set the model to evaluation mode
# Load an image
with torch.no_grad(): # Disable gradient calculation for inference
_, objects_pred = object_prediction(model_object, image, score_threshold=score_threshold, iou_threshold=0.1)
_, arrow_pred = arrow_prediction(model_arrow, image, score_threshold=score_threshold, iou_threshold=iou_threshold, distance_treshold=distance_treshold)
st.session_state.arrow_pred = arrow_pred
boxes, labels, scores, keypoints = mix_predictions(objects_pred, arrow_pred)
boxes, labels, scores, keypoints, bpmn_id, flow_links, best_points, pool_dict = develop_prediction(
boxes, labels, scores, keypoints, class_dict
)
image = image.permute(1, 2, 0).cpu().numpy()
image = (image * 255).astype(np.uint8)
data = generate_data(image, boxes, labels, scores, keypoints, bpmn_id, flow_links, best_points, pool_dict)
return image, data
def evaluate_model_by_class(pred_boxes, true_boxes, pred_labels, true_labels, model_dict, iou_threshold=0.5):
"""
Evaluate the model's performance on a per-class basis.
Parameters:
- pred_boxes (array): Predicted bounding boxes.
- true_boxes (array): Ground truth bounding boxes.
- pred_labels (array): Predicted labels.
- true_labels (array): Ground truth labels.
- model_dict (dict): Dictionary mapping model labels to indices.
- iou_threshold (float): IoU threshold for determining matches.
Returns:
- tuple: Precision, recall, and F1-score per class.
"""
# Initialize dictionaries to hold per-class counts
class_tp = {cls: 0 for cls in model_dict.values()}
class_fp = {cls: 0 for cls in model_dict.values()}
class_fn = {cls: 0 for cls in model_dict.values()}
# Track which true boxes have been matched
matched = [False] * len(true_boxes)
# Check each prediction against true boxes
for pred_box, pred_label in zip(pred_boxes, pred_labels):
match_found = False
for idx, (true_box, true_label) in enumerate(zip(true_boxes, true_labels)):
if not matched[idx] and pred_label == true_label:
if iou(np.array(pred_box), np.array(true_box)) >= iou_threshold:
class_tp[model_dict[pred_label]] += 1
matched[idx] = True
match_found = True
break
if not match_found:
class_fp[model_dict[pred_label]] += 1
# Count false negatives
for idx, (true_box, true_label) in enumerate(zip(true_boxes, true_labels)):
if not matched[idx]:
class_fn[model_dict[true_label]] += 1
# Calculate precision, recall, and F1-score per class
class_precision = {}
class_recall = {}
class_f1_score = {}
for cls in model_dict.values():
precision = class_tp[cls] / (class_tp[cls] + class_fp[cls]) if class_tp[cls] + class_fp[cls] > 0 else 0
recall = class_tp[cls] / (class_tp[cls] + class_fn[cls]) if class_tp[cls] + class_fn[cls] > 0 else 0
f1_score = 2 * (precision * recall) / (precision + recall) if precision + recall > 0 else 0
class_precision[cls] = precision
class_recall[cls] = recall
class_f1_score[cls] = f1_score
return class_precision, class_recall, class_f1_score
def keypoints_measure(pred_boxes, pred_box, true_boxes, true_box, pred_keypoints, true_keypoints, distance_threshold=5):
"""
Measure the accuracy of predicted keypoints compared to true keypoints.
Parameters:
- pred_boxes (array): Predicted bounding boxes.
- pred_box (array): Single predicted bounding box.
- true_boxes (array): Ground truth bounding boxes.
- true_box (array): Single ground truth bounding box.
- pred_keypoints (array): Predicted keypoints.
- true_keypoints (array): Ground truth keypoints.
- distance_threshold (int): Distance threshold for considering a keypoint match.
Returns:
- tuple: Number of correct keypoints and whether the keypoints are reverted.
"""
result = 0
reverted = False
# Find the position of keypoints in the list
idx = np.where(pred_boxes == pred_box)[0][0]
idx2 = np.where(true_boxes == true_box)[0][0]
keypoint1_pred = pred_keypoints[idx][0]
keypoint1_true = true_keypoints[idx2][0]
keypoint2_pred = pred_keypoints[idx][1]
keypoint2_true = true_keypoints[idx2][1]
distance1 = np.linalg.norm(keypoint1_pred[:2] - keypoint1_true[:2])
distance2 = np.linalg.norm(keypoint2_pred[:2] - keypoint2_true[:2])
distance3 = np.linalg.norm(keypoint1_pred[:2] - keypoint2_true[:2])
distance4 = np.linalg.norm(keypoint2_pred[:2] - keypoint1_true[:2])
if distance1 < distance_threshold:
result += 1
if distance2 < distance_threshold:
result += 1
if distance3 < distance_threshold or distance4 < distance_threshold:
reverted = True
return result, reverted
def evaluate_single_image(pred_boxes, true_boxes, pred_labels, true_labels, pred_keypoints, true_keypoints, iou_threshold=0.5, distance_threshold=5):
"""
Evaluate a single image's predictions against the ground truth.
Parameters:
- pred_boxes (array): Predicted bounding boxes.
- true_boxes (array): Ground truth bounding boxes.
- pred_labels (array): Predicted labels.
- true_labels (array): Ground truth labels.
- pred_keypoints (array): Predicted keypoints.
- true_keypoints (array): Ground truth keypoints.
- iou_threshold (float): IoU threshold for determining matches.
- distance_threshold (int): Distance threshold for considering a keypoint match.
Returns:
- tuple: True positives, false positives, false negatives, correct labels, incorrect labels, correct keypoints, incorrect keypoints, and reverted keypoints count.
"""
tp, fp, fn = 0, 0, 0
key_t, key_f = 0, 0
labels_t, labels_f = 0, 0
reverted_tot = 0
matched_true_boxes = set()
for pred_idx, (pred_box, pred_label) in enumerate(zip(pred_boxes, pred_labels)):
match_found = False
for true_idx, true_box in enumerate(true_boxes):
if true_idx in matched_true_boxes:
continue
iou_val = iou(pred_box, true_box)
if iou_val >= iou_threshold:
if true_keypoints is not None and pred_keypoints is not None:
key_result, reverted = keypoints_measure(
pred_boxes, pred_box, true_boxes, true_box, pred_keypoints, true_keypoints, distance_threshold
)
key_t += key_result
key_f += 2 - key_result
if reverted:
reverted_tot += 1
match_found = True
matched_true_boxes.add(true_idx)
if pred_label == true_labels[true_idx]:
labels_t += 1
else:
labels_f += 1
tp += 1
break
if not match_found:
fp += 1
fn = len(true_boxes) - tp
return tp, fp, fn, labels_t, labels_f, key_t, key_f, reverted_tot
def pred_4_evaluation(model, loader, score_threshold=0.5, iou_threshold=0.5, distance_threshold=5, key_correction=True, model_type='object'):
"""
Evaluate the model on a dataset using predictions for evaluation.
Parameters:
- model (torch.nn.Module): The model to evaluate.
- loader (torch.utils.data.DataLoader): DataLoader for the dataset.
- score_threshold (float): Score threshold for filtering predictions.
- iou_threshold (float): IoU threshold for determining matches.
- distance_threshold (int): Distance threshold for considering a keypoint match.
- key_correction (bool): Whether to apply keypoint correction.
- model_type (str): Type of model ('object' or 'arrow').
Returns:
- tuple: Evaluation results including true positives, false positives, false negatives, correct labels, incorrect labels, correct keypoints, incorrect keypoints, and reverted keypoints count.
"""
model.eval()
tp, fp, fn = 0, 0, 0
labels_t, labels_f = 0, 0
key_t, key_f = 0, 0
reverted = 0
with torch.no_grad():
for images, targets_im in tqdm(loader, desc="Testing... "): # Wrap the loader with tqdm
devices = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
images = [image.to(devices) for image in images]
targets = [{k: v.clone().detach().to(devices) for k, v in t.items()} for t in targets_im]
predictions = model(images)
for target, prediction in zip(targets, predictions):
true_boxes = target['boxes'].cpu().numpy()
true_labels = target['labels'].cpu().numpy()
if 'keypoints' in target:
true_keypoints = target['keypoints'].cpu().numpy()
pred_boxes = prediction['boxes'].cpu().numpy()
scores = prediction['scores'].cpu().numpy()
pred_labels = prediction['labels'].cpu().numpy()
if 'keypoints' in prediction:
pred_keypoints = prediction['keypoints'].cpu().numpy()
selected_boxes = non_maximum_suppression(pred_boxes, scores, iou_threshold=iou_threshold)
pred_boxes = pred_boxes[selected_boxes]
scores = scores[selected_boxes]
pred_labels = pred_labels[selected_boxes]
if 'keypoints' in prediction:
pred_keypoints = pred_keypoints[selected_boxes]
filtered_boxes = []
filtered_labels = []
filtered_keypoints = []
if 'keypoints' not in prediction:
# Create a list of zeros of length equal to the number of boxes
pred_keypoints = [np.zeros((2, 3)) for _ in range(len(pred_boxes))]
for box, score, label, keypoints in zip(pred_boxes, scores, pred_labels, pred_keypoints):
if score >= score_threshold:
filtered_boxes.append(box)
filtered_labels.append(label)
if 'keypoints' in prediction:
filtered_keypoints.append(keypoints)
if key_correction and ('keypoints' in prediction):
filtered_keypoints = keypoint_correction(filtered_keypoints, filtered_boxes, filtered_labels)
if 'keypoints' not in target:
filtered_keypoints = None
true_keypoints = None
tp_img, fp_img, fn_img, labels_t_img, labels_f_img, key_t_img, key_f_img, reverted_img = evaluate_single_image(
filtered_boxes, true_boxes, filtered_labels, true_labels, filtered_keypoints, true_keypoints, iou_threshold, distance_threshold
)
tp += tp_img
fp += fp_img
fn += fn_img
labels_t += labels_t_img
labels_f += labels_f_img
key_t += key_t_img
key_f += key_f_img
reverted += reverted_img
return tp, fp, fn, labels_t, labels_f, key_t, key_f, reverted
def main_evaluation(model, test_loader, score_threshold=0.5, iou_threshold=0.5, distance_threshold=5, key_correction=True, model_type='object'):
"""
Main function to evaluate the model on the test dataset.
Parameters:
- model (torch.nn.Module): The model to evaluate.
- test_loader (torch.utils.data.DataLoader): DataLoader for the test dataset.
- score_threshold (float): Score threshold for filtering predictions.
- iou_threshold (float): IoU threshold for determining matches.
- distance_threshold (int): Distance threshold for considering a keypoint match.
- key_correction (bool): Whether to apply keypoint correction.
- model_type (str): Type of model ('object' or 'arrow').
Returns:
- tuple: Precision, recall, F1-score, key accuracy, and reverted accuracy.
"""
tp, fp, fn, labels_t, labels_f, key_t, key_f, reverted = pred_4_evaluation(
model, test_loader, score_threshold, iou_threshold, distance_threshold, key_correction, model_type
)
labels_precision = labels_t / (labels_t + labels_f) if (labels_t + labels_f) > 0 else 0
precision = tp / (tp + fp) if (tp + fp) > 0 else 0
recall = tp / (tp + fn) if (tp + fn) > 0 else 0
f1_score = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0
if model_type == 'arrow':
key_accuracy = key_t / (key_t + key_f) if (key_t + key_f) > 0 else 0
reverted_accuracy = reverted / (key_t + key_f) if (key_t + key_f) > 0 else 0
else:
key_accuracy = 0
reverted_accuracy = 0
return labels_precision, precision, recall, f1_score, key_accuracy, reverted_accuracy
def evaluate_model_by_class_single_image(pred_boxes, true_boxes, pred_labels, true_labels, class_tp, class_fp, class_fn, model_dict, iou_threshold=0.5):
"""
Evaluate a single image's predictions on a per-class basis.
Parameters:
- pred_boxes (array): Predicted bounding boxes.
- true_boxes (array): Ground truth bounding boxes.
- pred_labels (array): Predicted labels.
- true_labels (array): Ground truth labels.
- class_tp (dict): Dictionary of true positive counts per class.
- class_fp (dict): Dictionary of false positive counts per class.
- class_fn (dict): Dictionary of false negative counts per class.
- model_dict (dict): Dictionary mapping model labels to indices.
- iou_threshold (float): IoU threshold for determining matches.
"""
matched_true_boxes = set()
for pred_idx, (pred_box, pred_label) in enumerate(zip(pred_boxes, pred_labels)):
match_found = False
for true_idx, (true_box, true_label) in enumerate(zip(true_boxes, true_labels)):
if true_idx in matched_true_boxes:
continue
if pred_label == true_label and iou(np.array(pred_box), np.array(true_box)) >= iou_threshold:
class_tp[model_dict[pred_label]] += 1
matched_true_boxes.add(true_idx)
match_found = True
break
if not match_found:
class_fp[model_dict[pred_label]] += 1
for idx, true_label in enumerate(true_labels):
if idx not in matched_true_boxes:
class_fn[model_dict[true_label]] += 1
def pred_4_evaluation_per_class(model, loader, score_threshold=0.5, iou_threshold=0.5):
"""
Generate predictions for evaluation on a per-class basis.
Parameters:
- model (torch.nn.Module): The model to evaluate.
- loader (torch.utils.data.DataLoader): DataLoader for the dataset.
- score_threshold (float): Score threshold for filtering predictions.
- iou_threshold (float): IoU threshold for determining matches.
Yields:
- tuple: Predicted and true boxes and labels for each batch.
"""
model.eval()
with torch.no_grad():
for images, targets_im in tqdm(loader, desc="Testing... "):
devices = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
images = [image.to(devices) for image in images]
targets = [{k: v.clone().detach().to(devices) for k, v in t.items()} for t in targets_im]
predictions = model(images)
for target, prediction in zip(targets, predictions):
true_boxes = target['boxes'].cpu().numpy()
true_labels = target['labels'].cpu().numpy()
pred_boxes = prediction['boxes'].cpu().numpy()
scores = prediction['scores'].cpu().numpy()
pred_labels = prediction['labels'].cpu().numpy()
idx = np.where(scores > score_threshold)[0]
pred_boxes = pred_boxes[idx]
scores = scores[idx]
pred_labels = pred_labels[idx]
selected_boxes = non_maximum_suppression(pred_boxes, scores, iou_threshold=iou_threshold)
pred_boxes = pred_boxes[selected_boxes]
scores = scores[selected_boxes]
pred_labels = pred_labels[selected_boxes]
yield pred_boxes, true_boxes, pred_labels, true_labels
def evaluate_model_by_class(model, test_loader, model_dict, score_threshold=0.5, iou_threshold=0.5):
"""
Evaluate the model's performance on a per-class basis for the entire dataset.
Parameters:
- model (torch.nn.Module): The model to evaluate.
- test_loader (torch.utils.data.DataLoader): DataLoader for the test dataset.
- model_dict (dict): Dictionary mapping model labels to indices.
- score_threshold (float): Score threshold for filtering predictions.
- iou_threshold (float): IoU threshold for determining matches.
Returns:
- tuple: Precision, recall, and F1-score per class.
"""
class_tp = {cls: 0 for cls in model_dict.values()}
class_fp = {cls: 0 for cls in model_dict.values()}
class_fn = {cls: 0 for cls in model_dict.values()}
for pred_boxes, true_boxes, pred_labels, true_labels in pred_4_evaluation_per_class(model, test_loader, score_threshold, iou_threshold):
evaluate_model_by_class_single_image(pred_boxes, true_boxes, pred_labels, true_labels, class_tp, class_fp, class_fn, model_dict, iou_threshold)
class_precision = {}
class_recall = {}
class_f1_score = {}
for cls in model_dict.values():
precision = class_tp[cls] / (class_tp[cls] + class_fp[cls]) if class_tp[cls] + class_fp[cls] > 0 else 0
recall = class_tp[cls] / (class_tp[cls] + class_fn[cls]) if class_tp[cls] + class_fn[cls] > 0 else 0
f1_score = 2 * (precision * recall) / (precision + recall) if precision + recall > 0 else 0
class_precision[cls] = precision
class_recall[cls] = recall
class_f1_score[cls] = f1_score
return class_precision, class_recall, class_f1_score
|