BenjiELCA's picture
add commentary to all the code
64b088f
import torch
import torchvision.transforms.functional as F
import numpy as np
import cv2
import matplotlib.pyplot as plt
import streamlit as st
# Define dictionaries to map class indices to their corresponding names
object_dict = {
0: 'background',
1: 'task',
2: 'exclusiveGateway',
3: 'event',
4: 'parallelGateway',
5: 'messageEvent',
6: 'pool',
7: 'lane',
8: 'dataObject',
9: 'dataStore',
10: 'subProcess',
11: 'eventBasedGateway',
12: 'timerEvent',
}
arrow_dict = {
0: 'background',
1: 'sequenceFlow',
2: 'dataAssociation',
3: 'messageFlow',
}
class_dict = {
0: 'background',
1: 'task',
2: 'exclusiveGateway',
3: 'event',
4: 'parallelGateway',
5: 'messageEvent',
6: 'pool',
7: 'lane',
8: 'dataObject',
9: 'dataStore',
10: 'subProcess',
11: 'eventBasedGateway',
12: 'timerEvent',
13: 'sequenceFlow',
14: 'dataAssociation',
15: 'messageFlow',
}
def is_inside(box1, box2):
"""Check if the center of box1 is inside box2."""
x_center = (box1[0] + box1[2]) / 2
y_center = (box1[1] + box1[3]) / 2
return box2[0] <= x_center <= box2[2] and box2[1] <= y_center <= box2[3]
def is_vertical(box):
"""Determine if the text in the bounding box is vertically aligned."""
width = box[2] - box[0]
height = box[3] - box[1]
return (height > 2 * width)
def rescale_boxes(scale, boxes):
"""Rescale the bounding boxes by a given scale factor."""
for i in range(len(boxes)):
boxes[i] = [boxes[i][0] * scale, boxes[i][1] * scale, boxes[i][2] * scale, boxes[i][3] * scale]
return boxes
def iou(box1, box2):
"""Calculate the Intersection over Union (IoU) of two bounding boxes."""
inter_box = [max(box1[0], box2[0]), max(box1[1], box2[1]), min(box1[2], box2[2]), min(box1[3], box2[3])]
inter_area = max(0, inter_box[2] - inter_box[0]) * max(0, inter_box[3] - inter_box[1])
box1_area = (box1[2] - box1[0]) * (box1[3] - box1[1])
box2_area = (box2[2] - box2[0]) * (box2[3] - box2[1])
union_area = box1_area + box2_area - inter_area
return inter_area / union_area
def proportion_inside(box1, box2):
"""Calculate the proportion of the smaller box inside the larger box."""
box1_area = (box1[2] - box1[0]) * (box1[3] - box1[1])
box2_area = (box2[2] - box2[0]) * (box2[3] - box2[1])
big_box, small_box = (box1, box2) if box1_area > box2_area else (box2, box1)
inter_box = [max(small_box[0], big_box[0]), max(small_box[1], big_box[1]), min(small_box[2], big_box[2]), min(small_box[3], big_box[3])]
inter_area = max(0, inter_box[2] - inter_box[0]) * max(0, inter_box[3] - inter_box[1])
proportion = inter_area / ((small_box[2] - small_box[0]) * (small_box[3] - small_box[1]))
return min(proportion, 1.0)
def resize_boxes(boxes, original_size, target_size):
"""
Resizes bounding boxes according to a new image size.
Parameters:
- boxes (np.array): The original bounding boxes as a numpy array of shape [N, 4].
- original_size (tuple): The original size of the image as (width, height).
- target_size (tuple): The desired size to resize the image to as (width, height).
Returns:
- np.array: The resized bounding boxes as a numpy array of shape [N, 4].
"""
orig_width, orig_height = original_size
target_width, target_height = target_size
width_ratio = target_width / orig_width
height_ratio = target_height / orig_height
boxes[:, 0] *= width_ratio
boxes[:, 1] *= height_ratio
boxes[:, 2] *= width_ratio
boxes[:, 3] *= height_ratio
return boxes
def resize_keypoints(keypoints, original_size, target_size):
"""
Resize keypoints based on the original and target dimensions of an image.
Parameters:
- keypoints (np.ndarray): The array of keypoints, where each keypoint is represented by its (x, y) coordinates.
- original_size (tuple): The width and height of the original image (width, height).
- target_size (tuple): The width and height of the target image (width, height).
Returns:
- np.ndarray: The resized keypoints.
"""
orig_width, orig_height = original_size
target_width, target_height = target_size
width_ratio = target_width / orig_width
height_ratio = target_height / orig_height
keypoints[:, 0] *= width_ratio
keypoints[:, 1] *= height_ratio
return keypoints
def write_results(name_model, metrics_list, start_epoch):
"""Write training results to a text file."""
with open('./results/' + name_model + '.txt', 'w') as f:
for i in range(len(metrics_list[0])):
f.write(f"{i + 1 + start_epoch},{metrics_list[0][i]},{metrics_list[1][i]},{metrics_list[2][i]},{metrics_list[3][i]},{metrics_list[4][i]},{metrics_list[5][i]},{metrics_list[6][i]},{metrics_list[7][i]},{metrics_list[8][i]},{metrics_list[9][i]} \n")
def find_other_keypoint(idx, keypoints, boxes):
"""
Find the opposite keypoint to the center of the box.
Parameters:
- idx (int): The index of the box and keypoints.
- keypoints (np.ndarray): The array of keypoints.
- boxes (np.ndarray): The array of bounding boxes.
Returns:
- tuple: The coordinates of the new keypoint and the average keypoint.
"""
box = boxes[idx]
key1, key2 = keypoints[idx]
x1, y1, x2, y2 = box
center = ((x1 + x2) // 2, (y1 + y2) // 2)
average_keypoint = (key1 + key2) // 2
if average_keypoint[0] < center[0]:
x = center[0] + abs(center[0] - average_keypoint[0])
else:
x = center[0] - abs(center[0] - average_keypoint[0])
if average_keypoint[1] < center[1]:
y = center[1] + abs(center[1] - average_keypoint[1])
else:
y = center[1] - abs(center[1] - average_keypoint[1])
return x, y, average_keypoint[0], average_keypoint[1]
def filter_overlap_boxes(boxes, scores, labels, keypoints, iou_threshold=0.5):
"""
Filters overlapping boxes based on the Intersection over Union (IoU) metric, keeping only the boxes with the highest scores.
Parameters:
- boxes (np.ndarray): Array of bounding boxes with shape (N, 4), where each row contains [x_min, y_min, x_max, y_max].
- scores (np.ndarray): Array of scores for each box, reflecting the confidence of detection.
- labels (np.ndarray): Array of labels corresponding to each box.
- keypoints (np.ndarray): Array of keypoints associated with each box.
- iou_threshold (float): Threshold for IoU above which a box is considered overlapping.
Returns:
- tuple: Filtered boxes, scores, labels, and keypoints.
"""
areas = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
xx1 = np.maximum(boxes[i, 0], boxes[order[1:], 0])
yy1 = np.maximum(boxes[i, 1], boxes[order[1:], 1])
xx2 = np.minimum(boxes[i, 2], boxes[order[1:], 2])
yy2 = np.minimum(boxes[i, 3], boxes[order[1:], 3])
w = np.maximum(0.0, xx2 - xx1)
h = np.maximum(0.0, yy2 - yy1)
inter = w * h
iou = inter / (areas[i] + areas[order[1:]] - inter)
inds = np.where(iou <= iou_threshold)[0]
order = order[inds + 1]
boxes = boxes[keep]
scores = scores[keep]
labels = labels[keep]
keypoints = keypoints[keep]
return boxes, scores, labels, keypoints
def draw_annotations(image,
target=None,
prediction=None,
full_prediction=None,
text_predictions=None,
model_dict=class_dict,
draw_keypoints=False,
draw_boxes=False,
draw_text=False,
draw_links=False,
draw_twins=False,
write_class=False,
write_score=False,
write_text=False,
write_idx=False,
score_threshold=0.4,
keypoints_correction=False,
only_print=None,
axis=False,
return_image=False,
new_size=(1333, 800),
resize=False):
"""
Draws annotations on images including bounding boxes, keypoints, links, and text.
Parameters:
- image (np.array): The image on which annotations will be drawn.
- target (dict): Ground truth data containing boxes, labels, etc.
- prediction (dict): Prediction data from a model.
- full_prediction (dict): Additional detailed prediction data, potentially including relationships.
- text_predictions (tuple): OCR text predictions containing bounding boxes and texts.
- model_dict (dict): Mapping from class IDs to class names.
- draw_keypoints (bool): Flag to draw keypoints.
- draw_boxes (bool): Flag to draw bounding boxes.
- draw_text (bool): Flag to draw text annotations.
- draw_links (bool): Flag to draw links between annotations.
- draw_twins (bool): Flag to draw twin keypoints.
- write_class (bool): Flag to write class names near the annotations.
- write_score (bool): Flag to write scores near the annotations.
- write_text (bool): Flag to write OCR recognized text.
- score_threshold (float): Threshold for scores above which annotations will be drawn.
- only_print (str): Specific class name to filter annotations by.
- resize (bool): Whether to resize annotations to fit the image size.
"""
# Convert image to RGB (if not already in that format)
if prediction is None:
image = image.squeeze(0).permute(1, 2, 0).cpu().numpy()
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image_copy = image.copy()
scale = max(image.shape[0], image.shape[1]) / 1000
# Helper function to draw annotations based on provided data
def draw(data, is_prediction=False):
for i in range(len(data['boxes'])):
box = data['boxes'][i].tolist()
x1, y1, x2, y2 = box
if resize:
x1, y1, x2, y2 = resize_boxes(np.array([box]), new_size, (image_copy.shape[1], image_copy.shape[0]))[0]
if is_prediction:
score = data['scores'][i].item()
if score < score_threshold:
continue
if draw_boxes:
if only_print is not None:
if data['labels'][i] != list(model_dict.values()).index(only_print):
continue
cv2.rectangle(image_copy, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 0) if is_prediction else (0, 0, 0), int(2 * scale))
if is_prediction and write_score:
cv2.putText(image_copy, str(round(score, 2)), (int(x1), int(y1) + int(15 * scale)), cv2.FONT_HERSHEY_SIMPLEX, scale / 2, (100, 100, 255), 2)
if write_class and 'labels' in data:
class_id = data['labels'][i].item()
cv2.putText(image_copy, model_dict[class_id], (int(x1), int(y1) - int(2 * scale)), cv2.FONT_HERSHEY_SIMPLEX, scale / 2, (255, 100, 100), 2)
if write_idx:
cv2.putText(image_copy, str(i), (int(x1) + int(15 * scale), int(y1) + int(15 * scale)), cv2.FONT_HERSHEY_SIMPLEX, 2 * scale, (0, 0, 0), 2)
# Draw keypoints if available
if draw_keypoints and 'keypoints' in data:
if is_prediction and keypoints_correction:
for idx, (key1, key2) in enumerate(data['keypoints']):
if data['labels'][idx] not in [list(model_dict.values()).index('sequenceFlow'),
list(model_dict.values()).index('messageFlow'),
list(model_dict.values()).index('dataAssociation')]:
continue
distance = np.linalg.norm(key1[:2] - key2[:2])
if distance < 5:
x_new, y_new, x, y = find_other_keypoint(idx, data['keypoints'], data['boxes'])
data['keypoints'][idx][0] = torch.tensor([x_new, y_new, 1])
data['keypoints'][idx][1] = torch.tensor([x, y, 1])
print("keypoint has been changed")
for i in range(len(data['keypoints'])):
kp = data['keypoints'][i]
for j in range(kp.shape[0]):
if is_prediction and data['labels'][i] not in [list(model_dict.values()).index('sequenceFlow'),
list(model_dict.values()).index('messageFlow'),
list(model_dict.values()).index('dataAssociation')]:
continue
if is_prediction:
score = data['scores'][i]
if score < score_threshold:
continue
x, y, v = np.array(kp[j])
if resize:
x, y, v = resize_keypoints(np.array([kp[j]]), new_size, (image_copy.shape[1], image_copy.shape[0]))[0]
if j == 0:
cv2.circle(image_copy, (int(x), int(y)), int(5 * scale), (0, 0, 255), -1)
else:
cv2.circle(image_copy, (int(x), int(y)), int(5 * scale), (255, 0, 0), -1)
# Draw text predictions if available
if (draw_text or write_text) and text_predictions is not None:
for i in range(len(text_predictions[0])):
x1, y1, x2, y2 = text_predictions[0][i]
text = text_predictions[1][i]
if resize:
x1, y1, x2, y2 = resize_boxes(np.array([[float(x1), float(y1), float(x2), float(y2)]]), new_size, (image_copy.shape[1], image_copy.shape[0]))[0]
if draw_text:
cv2.rectangle(image_copy, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), int(2 * scale))
if write_text:
cv2.putText(image_copy, text, (int(x1 + int(2 * scale)), int((y1 + y2) / 2)), cv2.FONT_HERSHEY_SIMPLEX, scale / 2, (0, 0, 0), 2)
def draw_with_links(full_prediction):
"""Draws links between objects based on the full prediction data."""
if draw_twins and full_prediction is not None:
circle_color = (0, 255, 0)
circle_radius = int(10 * scale)
for idx, (key1, key2) in enumerate(full_prediction['keypoints']):
if full_prediction['labels'][idx] not in [list(model_dict.values()).index('sequenceFlow'),
list(model_dict.values()).index('messageFlow'),
list(model_dict.values()).index('dataAssociation')]:
continue
distance = np.linalg.norm(key1[:2] - key2[:2])
if distance < 10:
x_new, y_new, x, y = find_other_keypoint(idx, full_prediction['keypoints'], full_prediction['boxes'])
cv2.circle(image_copy, (int(x), int(y)), circle_radius, circle_color, -1)
cv2.circle(image_copy, (int(x_new), int(y_new)), circle_radius, (0, 0, 0), -1)
if draw_links and full_prediction is not None:
for i, (start_idx, end_idx) in enumerate(full_prediction['links']):
if start_idx is None or end_idx is None:
continue
start_box = full_prediction['boxes'][start_idx]
end_box = full_prediction['boxes'][end_idx]
current_box = full_prediction['boxes'][i]
start_center = ((start_box[0] + start_box[2]) // 2, (start_box[1] + start_box[3]) // 2)
end_center = ((end_box[0] + end_box[2]) // 2, (end_box[1] + end_box[3]) // 2)
current_center = ((current_box[0] + current_box[2]) // 2, (current_box[1] + current_box[3]) // 2)
cv2.line(image_copy, (int(start_center[0]), int(start_center[1])), (int(current_center[0]), int(current_center[1])), (0, 0, 255), int(2 * scale))
cv2.line(image_copy, (int(current_center[0]), int(current_center[1])), (int(end_center[0]), int(end_center[1])), (255, 0, 0), int(2 * scale))
i += 1
if target is not None:
draw(target, is_prediction=False)
if prediction is not None:
draw(prediction, is_prediction=True)
if full_prediction is not None:
draw_with_links(full_prediction)
image_copy = cv2.cvtColor(image_copy, cv2.COLOR_BGR2RGB)
plt.figure(figsize=(12, 12))
plt.imshow(image_copy)
if not axis:
plt.axis('off')
plt.show()
if return_image:
return image_copy
def find_closest_object(keypoint, boxes, labels):
"""
Find the closest object to a keypoint based on their proximity.
Parameters:
- keypoint (numpy.ndarray): The coordinates of the keypoint.
- boxes (numpy.ndarray): The bounding boxes of the objects.
Returns:
- int or None: The index of the closest object to the keypoint, or None if no object is found.
"""
closest_object_idx = None
best_point = None
min_distance = float('inf')
for i, box in enumerate(boxes):
if labels[i] in [list(class_dict.values()).index('sequenceFlow'),
list(class_dict.values()).index('messageFlow'),
list(class_dict.values()).index('dataAssociation'),
list(class_dict.values()).index('lane')]:
continue
x1, y1, x2, y2 = box
top = ((x1 + x2) / 2, y1)
bottom = ((x1 + x2) / 2, y2)
left = (x1, (y1 + y2) / 2)
right = (x2, (y1 + y2) / 2)
points = [left, top, right, bottom]
pos_dict = {0: 'left', 1: 'top', 2: 'right', 3: 'bottom'}
for pos, point in enumerate(points):
distance = np.linalg.norm(keypoint[:2] - point)
if distance < min_distance:
min_distance = distance
closest_object_idx = i
best_point = pos_dict[pos]
return closest_object_idx, best_point
def error(text='There is an error in the detection'):
"""Display an error message using Streamlit."""
st.error(text, icon="🚨")
def warning(text='Some element are maybe not detected, verify the results, try to modify the parameters or try to add it in the method and style step.'):
"""Display a warning message using Streamlit."""
st.warning(text, icon="⚠️")