Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,743 Bytes
0aaa1f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch optimization for diffusion models."""
import math
from enum import Enum
from typing import Optional, Union
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LambdaLR
from .utils import logging
logger = logging.get_logger(__name__)
class SchedulerType(Enum):
LINEAR = "linear"
COSINE = "cosine"
COSINE_WITH_RESTARTS = "cosine_with_restarts"
POLYNOMIAL = "polynomial"
CONSTANT = "constant"
CONSTANT_WITH_WARMUP = "constant_with_warmup"
PIECEWISE_CONSTANT = "piecewise_constant"
def get_constant_schedule(optimizer: Optimizer, last_epoch: int = -1) -> LambdaLR:
"""
Create a schedule with a constant learning rate, using the learning rate set in optimizer.
Args:
optimizer ([`~torch.optim.Optimizer`]):
The optimizer for which to schedule the learning rate.
last_epoch (`int`, *optional*, defaults to -1):
The index of the last epoch when resuming training.
Return:
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
"""
return LambdaLR(optimizer, lambda _: 1, last_epoch=last_epoch)
def get_constant_schedule_with_warmup(optimizer: Optimizer, num_warmup_steps: int, last_epoch: int = -1) -> LambdaLR:
"""
Create a schedule with a constant learning rate preceded by a warmup period during which the learning rate
increases linearly between 0 and the initial lr set in the optimizer.
Args:
optimizer ([`~torch.optim.Optimizer`]):
The optimizer for which to schedule the learning rate.
num_warmup_steps (`int`):
The number of steps for the warmup phase.
last_epoch (`int`, *optional*, defaults to -1):
The index of the last epoch when resuming training.
Return:
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
"""
def lr_lambda(current_step: int):
if current_step < num_warmup_steps:
return float(current_step) / float(max(1.0, num_warmup_steps))
return 1.0
return LambdaLR(optimizer, lr_lambda, last_epoch=last_epoch)
def get_piecewise_constant_schedule(optimizer: Optimizer, step_rules: str, last_epoch: int = -1) -> LambdaLR:
"""
Create a schedule with a constant learning rate, using the learning rate set in optimizer.
Args:
optimizer ([`~torch.optim.Optimizer`]):
The optimizer for which to schedule the learning rate.
step_rules (`string`):
The rules for the learning rate. ex: rule_steps="1:10,0.1:20,0.01:30,0.005" it means that the learning rate
if multiple 1 for the first 10 steps, mutiple 0.1 for the next 20 steps, multiple 0.01 for the next 30
steps and multiple 0.005 for the other steps.
last_epoch (`int`, *optional*, defaults to -1):
The index of the last epoch when resuming training.
Return:
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
"""
rules_dict = {}
rule_list = step_rules.split(",")
for rule_str in rule_list[:-1]:
value_str, steps_str = rule_str.split(":")
steps = int(steps_str)
value = float(value_str)
rules_dict[steps] = value
last_lr_multiple = float(rule_list[-1])
def create_rules_function(rules_dict, last_lr_multiple):
def rule_func(steps: int) -> float:
sorted_steps = sorted(rules_dict.keys())
for i, sorted_step in enumerate(sorted_steps):
if steps < sorted_step:
return rules_dict[sorted_steps[i]]
return last_lr_multiple
return rule_func
rules_func = create_rules_function(rules_dict, last_lr_multiple)
return LambdaLR(optimizer, rules_func, last_epoch=last_epoch)
def get_linear_schedule_with_warmup(
optimizer: Optimizer, num_warmup_steps: int, num_training_steps: int, last_epoch: int = -1
) -> LambdaLR:
"""
Create a schedule with a learning rate that decreases linearly from the initial lr set in the optimizer to 0, after
a warmup period during which it increases linearly from 0 to the initial lr set in the optimizer.
Args:
optimizer ([`~torch.optim.Optimizer`]):
The optimizer for which to schedule the learning rate.
num_warmup_steps (`int`):
The number of steps for the warmup phase.
num_training_steps (`int`):
The total number of training steps.
last_epoch (`int`, *optional*, defaults to -1):
The index of the last epoch when resuming training.
Return:
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
"""
def lr_lambda(current_step: int):
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
return max(
0.0, float(num_training_steps - current_step) / float(max(1, num_training_steps - num_warmup_steps))
)
return LambdaLR(optimizer, lr_lambda, last_epoch)
def get_cosine_schedule_with_warmup(
optimizer: Optimizer, num_warmup_steps: int, num_training_steps: int, num_cycles: float = 0.5, last_epoch: int = -1
) -> LambdaLR:
"""
Create a schedule with a learning rate that decreases following the values of the cosine function between the
initial lr set in the optimizer to 0, after a warmup period during which it increases linearly between 0 and the
initial lr set in the optimizer.
Args:
optimizer ([`~torch.optim.Optimizer`]):
The optimizer for which to schedule the learning rate.
num_warmup_steps (`int`):
The number of steps for the warmup phase.
num_training_steps (`int`):
The total number of training steps.
num_periods (`float`, *optional*, defaults to 0.5):
The number of periods of the cosine function in a schedule (the default is to just decrease from the max
value to 0 following a half-cosine).
last_epoch (`int`, *optional*, defaults to -1):
The index of the last epoch when resuming training.
Return:
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
"""
def lr_lambda(current_step):
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
progress = float(current_step - num_warmup_steps) / float(max(1, num_training_steps - num_warmup_steps))
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)))
return LambdaLR(optimizer, lr_lambda, last_epoch)
def get_cosine_with_hard_restarts_schedule_with_warmup(
optimizer: Optimizer, num_warmup_steps: int, num_training_steps: int, num_cycles: int = 1, last_epoch: int = -1
) -> LambdaLR:
"""
Create a schedule with a learning rate that decreases following the values of the cosine function between the
initial lr set in the optimizer to 0, with several hard restarts, after a warmup period during which it increases
linearly between 0 and the initial lr set in the optimizer.
Args:
optimizer ([`~torch.optim.Optimizer`]):
The optimizer for which to schedule the learning rate.
num_warmup_steps (`int`):
The number of steps for the warmup phase.
num_training_steps (`int`):
The total number of training steps.
num_cycles (`int`, *optional*, defaults to 1):
The number of hard restarts to use.
last_epoch (`int`, *optional*, defaults to -1):
The index of the last epoch when resuming training.
Return:
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
"""
def lr_lambda(current_step):
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
progress = float(current_step - num_warmup_steps) / float(max(1, num_training_steps - num_warmup_steps))
if progress >= 1.0:
return 0.0
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * ((float(num_cycles) * progress) % 1.0))))
return LambdaLR(optimizer, lr_lambda, last_epoch)
def get_polynomial_decay_schedule_with_warmup(
optimizer: Optimizer,
num_warmup_steps: int,
num_training_steps: int,
lr_end: float = 1e-7,
power: float = 1.0,
last_epoch: int = -1,
) -> LambdaLR:
"""
Create a schedule with a learning rate that decreases as a polynomial decay from the initial lr set in the
optimizer to end lr defined by *lr_end*, after a warmup period during which it increases linearly from 0 to the
initial lr set in the optimizer.
Args:
optimizer ([`~torch.optim.Optimizer`]):
The optimizer for which to schedule the learning rate.
num_warmup_steps (`int`):
The number of steps for the warmup phase.
num_training_steps (`int`):
The total number of training steps.
lr_end (`float`, *optional*, defaults to 1e-7):
The end LR.
power (`float`, *optional*, defaults to 1.0):
Power factor.
last_epoch (`int`, *optional*, defaults to -1):
The index of the last epoch when resuming training.
Note: *power* defaults to 1.0 as in the fairseq implementation, which in turn is based on the original BERT
implementation at
https://github.com/google-research/bert/blob/f39e881b169b9d53bea03d2d341b31707a6c052b/optimization.py#L37
Return:
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
"""
lr_init = optimizer.defaults["lr"]
if not (lr_init > lr_end):
raise ValueError(f"lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})")
def lr_lambda(current_step: int):
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
elif current_step > num_training_steps:
return lr_end / lr_init # as LambdaLR multiplies by lr_init
else:
lr_range = lr_init - lr_end
decay_steps = num_training_steps - num_warmup_steps
pct_remaining = 1 - (current_step - num_warmup_steps) / decay_steps
decay = lr_range * pct_remaining**power + lr_end
return decay / lr_init # as LambdaLR multiplies by lr_init
return LambdaLR(optimizer, lr_lambda, last_epoch)
TYPE_TO_SCHEDULER_FUNCTION = {
SchedulerType.LINEAR: get_linear_schedule_with_warmup,
SchedulerType.COSINE: get_cosine_schedule_with_warmup,
SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup,
SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup,
SchedulerType.CONSTANT: get_constant_schedule,
SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup,
SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule,
}
def get_scheduler(
name: Union[str, SchedulerType],
optimizer: Optimizer,
step_rules: Optional[str] = None,
num_warmup_steps: Optional[int] = None,
num_training_steps: Optional[int] = None,
num_cycles: int = 1,
power: float = 1.0,
last_epoch: int = -1,
) -> LambdaLR:
"""
Unified API to get any scheduler from its name.
Args:
name (`str` or `SchedulerType`):
The name of the scheduler to use.
optimizer (`torch.optim.Optimizer`):
The optimizer that will be used during training.
step_rules (`str`, *optional*):
A string representing the step rules to use. This is only used by the `PIECEWISE_CONSTANT` scheduler.
num_warmup_steps (`int`, *optional*):
The number of warmup steps to do. This is not required by all schedulers (hence the argument being
optional), the function will raise an error if it's unset and the scheduler type requires it.
num_training_steps (`int``, *optional*):
The number of training steps to do. This is not required by all schedulers (hence the argument being
optional), the function will raise an error if it's unset and the scheduler type requires it.
num_cycles (`int`, *optional*):
The number of hard restarts used in `COSINE_WITH_RESTARTS` scheduler.
power (`float`, *optional*, defaults to 1.0):
Power factor. See `POLYNOMIAL` scheduler
last_epoch (`int`, *optional*, defaults to -1):
The index of the last epoch when resuming training.
"""
name = SchedulerType(name)
schedule_func = TYPE_TO_SCHEDULER_FUNCTION[name]
if name == SchedulerType.CONSTANT:
return schedule_func(optimizer, last_epoch=last_epoch)
if name == SchedulerType.PIECEWISE_CONSTANT:
return schedule_func(optimizer, step_rules=step_rules, last_epoch=last_epoch)
# All other schedulers require `num_warmup_steps`
if num_warmup_steps is None:
raise ValueError(f"{name} requires `num_warmup_steps`, please provide that argument.")
if name == SchedulerType.CONSTANT_WITH_WARMUP:
return schedule_func(optimizer, num_warmup_steps=num_warmup_steps, last_epoch=last_epoch)
# All other schedulers require `num_training_steps`
if num_training_steps is None:
raise ValueError(f"{name} requires `num_training_steps`, please provide that argument.")
if name == SchedulerType.COSINE_WITH_RESTARTS:
return schedule_func(
optimizer,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
num_cycles=num_cycles,
last_epoch=last_epoch,
)
if name == SchedulerType.POLYNOMIAL:
return schedule_func(
optimizer,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
power=power,
last_epoch=last_epoch,
)
return schedule_func(
optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=num_training_steps, last_epoch=last_epoch
)
|