Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from pathlib import Path | |
from typing import Dict, Union | |
import torch | |
from huggingface_hub.utils import validate_hf_hub_args | |
from safetensors import safe_open | |
from ..utils import ( | |
_get_model_file, | |
is_transformers_available, | |
logging, | |
) | |
if is_transformers_available(): | |
from transformers import ( | |
CLIPImageProcessor, | |
CLIPVisionModelWithProjection, | |
) | |
from ..models.attention_processor import ( | |
IPAdapterAttnProcessor, | |
IPAdapterAttnProcessor2_0, | |
) | |
logger = logging.get_logger(__name__) | |
class IPAdapterMixin: | |
"""Mixin for handling IP Adapters.""" | |
def load_ip_adapter( | |
self, | |
pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], | |
subfolder: str, | |
weight_name: str, | |
**kwargs, | |
): | |
""" | |
Parameters: | |
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): | |
Can be either: | |
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on | |
the Hub. | |
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved | |
with [`ModelMixin.save_pretrained`]. | |
- A [torch state | |
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict). | |
cache_dir (`Union[str, os.PathLike]`, *optional*): | |
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache | |
is not used. | |
force_download (`bool`, *optional*, defaults to `False`): | |
Whether or not to force the (re-)download of the model weights and configuration files, overriding the | |
cached versions if they exist. | |
resume_download (`bool`, *optional*, defaults to `False`): | |
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any | |
incompletely downloaded files are deleted. | |
proxies (`Dict[str, str]`, *optional*): | |
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', | |
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | |
local_files_only (`bool`, *optional*, defaults to `False`): | |
Whether to only load local model weights and configuration files or not. If set to `True`, the model | |
won't be downloaded from the Hub. | |
token (`str` or *bool*, *optional*): | |
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from | |
`diffusers-cli login` (stored in `~/.huggingface`) is used. | |
revision (`str`, *optional*, defaults to `"main"`): | |
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier | |
allowed by Git. | |
subfolder (`str`, *optional*, defaults to `""`): | |
The subfolder location of a model file within a larger model repository on the Hub or locally. | |
""" | |
# Load the main state dict first. | |
cache_dir = kwargs.pop("cache_dir", None) | |
force_download = kwargs.pop("force_download", False) | |
resume_download = kwargs.pop("resume_download", False) | |
proxies = kwargs.pop("proxies", None) | |
local_files_only = kwargs.pop("local_files_only", None) | |
token = kwargs.pop("token", None) | |
revision = kwargs.pop("revision", None) | |
user_agent = { | |
"file_type": "attn_procs_weights", | |
"framework": "pytorch", | |
} | |
if not isinstance(pretrained_model_name_or_path_or_dict, dict): | |
model_file = _get_model_file( | |
pretrained_model_name_or_path_or_dict, | |
weights_name=weight_name, | |
cache_dir=cache_dir, | |
force_download=force_download, | |
resume_download=resume_download, | |
proxies=proxies, | |
local_files_only=local_files_only, | |
token=token, | |
revision=revision, | |
subfolder=subfolder, | |
user_agent=user_agent, | |
) | |
if weight_name.endswith(".safetensors"): | |
state_dict = {"image_proj": {}, "ip_adapter": {}} | |
with safe_open(model_file, framework="pt", device="cpu") as f: | |
for key in f.keys(): | |
if key.startswith("image_proj."): | |
state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key) | |
elif key.startswith("ip_adapter."): | |
state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key) | |
else: | |
state_dict = torch.load(model_file, map_location="cpu") | |
else: | |
state_dict = pretrained_model_name_or_path_or_dict | |
keys = list(state_dict.keys()) | |
if keys != ["image_proj", "ip_adapter"]: | |
raise ValueError("Required keys are (`image_proj` and `ip_adapter`) missing from the state dict.") | |
# load CLIP image encoder here if it has not been registered to the pipeline yet | |
if hasattr(self, "image_encoder") and getattr(self, "image_encoder", None) is None: | |
if not isinstance(pretrained_model_name_or_path_or_dict, dict): | |
logger.info(f"loading image_encoder from {pretrained_model_name_or_path_or_dict}") | |
image_encoder = CLIPVisionModelWithProjection.from_pretrained( | |
pretrained_model_name_or_path_or_dict, | |
subfolder=Path(subfolder, "image_encoder").as_posix(), | |
).to(self.device, dtype=self.dtype) | |
self.image_encoder = image_encoder | |
self.register_to_config(image_encoder=["transformers", "CLIPVisionModelWithProjection"]) | |
else: | |
raise ValueError("`image_encoder` cannot be None when using IP Adapters.") | |
# create feature extractor if it has not been registered to the pipeline yet | |
if hasattr(self, "feature_extractor") and getattr(self, "feature_extractor", None) is None: | |
self.feature_extractor = CLIPImageProcessor() | |
self.register_to_config(feature_extractor=["transformers", "CLIPImageProcessor"]) | |
# load ip-adapter into unet | |
unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet | |
unet._load_ip_adapter_weights(state_dict) | |
def set_ip_adapter_scale(self, scale): | |
unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet | |
for attn_processor in unet.attn_processors.values(): | |
if isinstance(attn_processor, (IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0)): | |
attn_processor.scale = scale | |
def unload_ip_adapter(self): | |
""" | |
Unloads the IP Adapter weights | |
Examples: | |
```python | |
>>> # Assuming `pipeline` is already loaded with the IP Adapter weights. | |
>>> pipeline.unload_ip_adapter() | |
>>> ... | |
``` | |
""" | |
# remove CLIP image encoder | |
if hasattr(self, "image_encoder") and getattr(self, "image_encoder", None) is not None: | |
self.image_encoder = None | |
self.register_to_config(image_encoder=[None, None]) | |
# remove feature extractor | |
if hasattr(self, "feature_extractor") and getattr(self, "feature_extractor", None) is not None: | |
self.feature_extractor = None | |
self.register_to_config(feature_extractor=[None, None]) | |
# remove hidden encoder | |
self.unet.encoder_hid_proj = None | |
self.config.encoder_hid_dim_type = None | |
# restore original Unet attention processors layers | |
self.unet.set_default_attn_processor() | |