Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2023 Zhejiang University Team and The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import math | |
from typing import List, Optional, Tuple, Union | |
import numpy as np | |
import torch | |
from ..configuration_utils import ConfigMixin, register_to_config | |
from .scheduling_utils import SchedulerMixin, SchedulerOutput | |
class IPNDMScheduler(SchedulerMixin, ConfigMixin): | |
""" | |
A fourth-order Improved Pseudo Linear Multistep scheduler. | |
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic | |
methods the library implements for all schedulers such as loading and saving. | |
Args: | |
num_train_timesteps (`int`, defaults to 1000): | |
The number of diffusion steps to train the model. | |
trained_betas (`np.ndarray`, *optional*): | |
Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`. | |
""" | |
order = 1 | |
def __init__( | |
self, num_train_timesteps: int = 1000, trained_betas: Optional[Union[np.ndarray, List[float]]] = None | |
): | |
# set `betas`, `alphas`, `timesteps` | |
self.set_timesteps(num_train_timesteps) | |
# standard deviation of the initial noise distribution | |
self.init_noise_sigma = 1.0 | |
# For now we only support F-PNDM, i.e. the runge-kutta method | |
# For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf | |
# mainly at formula (9), (12), (13) and the Algorithm 2. | |
self.pndm_order = 4 | |
# running values | |
self.ets = [] | |
self._step_index = None | |
def step_index(self): | |
""" | |
The index counter for current timestep. It will increae 1 after each scheduler step. | |
""" | |
return self._step_index | |
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None): | |
""" | |
Sets the discrete timesteps used for the diffusion chain (to be run before inference). | |
Args: | |
num_inference_steps (`int`): | |
The number of diffusion steps used when generating samples with a pre-trained model. | |
device (`str` or `torch.device`, *optional*): | |
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
""" | |
self.num_inference_steps = num_inference_steps | |
steps = torch.linspace(1, 0, num_inference_steps + 1)[:-1] | |
steps = torch.cat([steps, torch.tensor([0.0])]) | |
if self.config.trained_betas is not None: | |
self.betas = torch.tensor(self.config.trained_betas, dtype=torch.float32) | |
else: | |
self.betas = torch.sin(steps * math.pi / 2) ** 2 | |
self.alphas = (1.0 - self.betas**2) ** 0.5 | |
timesteps = (torch.atan2(self.betas, self.alphas) / math.pi * 2)[:-1] | |
self.timesteps = timesteps.to(device) | |
self.ets = [] | |
self._step_index = None | |
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index | |
def _init_step_index(self, timestep): | |
if isinstance(timestep, torch.Tensor): | |
timestep = timestep.to(self.timesteps.device) | |
index_candidates = (self.timesteps == timestep).nonzero() | |
# The sigma index that is taken for the **very** first `step` | |
# is always the second index (or the last index if there is only 1) | |
# This way we can ensure we don't accidentally skip a sigma in | |
# case we start in the middle of the denoising schedule (e.g. for image-to-image) | |
if len(index_candidates) > 1: | |
step_index = index_candidates[1] | |
else: | |
step_index = index_candidates[0] | |
self._step_index = step_index.item() | |
def step( | |
self, | |
model_output: torch.FloatTensor, | |
timestep: int, | |
sample: torch.FloatTensor, | |
return_dict: bool = True, | |
) -> Union[SchedulerOutput, Tuple]: | |
""" | |
Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with | |
the linear multistep method. It performs one forward pass multiple times to approximate the solution. | |
Args: | |
model_output (`torch.FloatTensor`): | |
The direct output from learned diffusion model. | |
timestep (`int`): | |
The current discrete timestep in the diffusion chain. | |
sample (`torch.FloatTensor`): | |
A current instance of a sample created by the diffusion process. | |
return_dict (`bool`): | |
Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or tuple. | |
Returns: | |
[`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`: | |
If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a | |
tuple is returned where the first element is the sample tensor. | |
""" | |
if self.num_inference_steps is None: | |
raise ValueError( | |
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" | |
) | |
if self.step_index is None: | |
self._init_step_index(timestep) | |
timestep_index = self.step_index | |
prev_timestep_index = self.step_index + 1 | |
ets = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] | |
self.ets.append(ets) | |
if len(self.ets) == 1: | |
ets = self.ets[-1] | |
elif len(self.ets) == 2: | |
ets = (3 * self.ets[-1] - self.ets[-2]) / 2 | |
elif len(self.ets) == 3: | |
ets = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 | |
else: | |
ets = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) | |
prev_sample = self._get_prev_sample(sample, timestep_index, prev_timestep_index, ets) | |
# upon completion increase step index by one | |
self._step_index += 1 | |
if not return_dict: | |
return (prev_sample,) | |
return SchedulerOutput(prev_sample=prev_sample) | |
def scale_model_input(self, sample: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor: | |
""" | |
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the | |
current timestep. | |
Args: | |
sample (`torch.FloatTensor`): | |
The input sample. | |
Returns: | |
`torch.FloatTensor`: | |
A scaled input sample. | |
""" | |
return sample | |
def _get_prev_sample(self, sample, timestep_index, prev_timestep_index, ets): | |
alpha = self.alphas[timestep_index] | |
sigma = self.betas[timestep_index] | |
next_alpha = self.alphas[prev_timestep_index] | |
next_sigma = self.betas[prev_timestep_index] | |
pred = (sample - sigma * ets) / max(alpha, 1e-8) | |
prev_sample = next_alpha * pred + ets * next_sigma | |
return prev_sample | |
def __len__(self): | |
return self.config.num_train_timesteps | |