Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2023 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import numbers | |
from typing import Dict, Optional, Tuple | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from ..utils import is_torch_version | |
from .activations import get_activation | |
from .embeddings import CombinedTimestepLabelEmbeddings, PixArtAlphaCombinedTimestepSizeEmbeddings | |
class AdaLayerNorm(nn.Module): | |
r""" | |
Norm layer modified to incorporate timestep embeddings. | |
Parameters: | |
embedding_dim (`int`): The size of each embedding vector. | |
num_embeddings (`int`): The size of the embeddings dictionary. | |
""" | |
def __init__(self, embedding_dim: int, num_embeddings: int): | |
super().__init__() | |
self.emb = nn.Embedding(num_embeddings, embedding_dim) | |
self.silu = nn.SiLU() | |
self.linear = nn.Linear(embedding_dim, embedding_dim * 2) | |
self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False) | |
def forward(self, x: torch.Tensor, timestep: torch.Tensor) -> torch.Tensor: | |
emb = self.linear(self.silu(self.emb(timestep))) | |
scale, shift = torch.chunk(emb, 2) | |
x = self.norm(x) * (1 + scale) + shift | |
return x | |
class AdaLayerNormZero(nn.Module): | |
r""" | |
Norm layer adaptive layer norm zero (adaLN-Zero). | |
Parameters: | |
embedding_dim (`int`): The size of each embedding vector. | |
num_embeddings (`int`): The size of the embeddings dictionary. | |
""" | |
def __init__(self, embedding_dim: int, num_embeddings: int): | |
super().__init__() | |
self.emb = CombinedTimestepLabelEmbeddings(num_embeddings, embedding_dim) | |
self.silu = nn.SiLU() | |
self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=True) | |
self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6) | |
def forward( | |
self, | |
x: torch.Tensor, | |
timestep: torch.Tensor, | |
class_labels: torch.LongTensor, | |
hidden_dtype: Optional[torch.dtype] = None, | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: | |
emb = self.linear(self.silu(self.emb(timestep, class_labels, hidden_dtype=hidden_dtype))) | |
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=1) | |
x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None] | |
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp | |
class AdaLayerNormSingle(nn.Module): | |
r""" | |
Norm layer adaptive layer norm single (adaLN-single). | |
As proposed in PixArt-Alpha (see: https://arxiv.org/abs/2310.00426; Section 2.3). | |
Parameters: | |
embedding_dim (`int`): The size of each embedding vector. | |
use_additional_conditions (`bool`): To use additional conditions for normalization or not. | |
""" | |
def __init__(self, embedding_dim: int, use_additional_conditions: bool = False): | |
super().__init__() | |
self.emb = PixArtAlphaCombinedTimestepSizeEmbeddings( | |
embedding_dim, size_emb_dim=embedding_dim // 3, use_additional_conditions=use_additional_conditions | |
) | |
self.silu = nn.SiLU() | |
self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=True) | |
def forward( | |
self, | |
timestep: torch.Tensor, | |
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, | |
batch_size: Optional[int] = None, | |
hidden_dtype: Optional[torch.dtype] = None, | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: | |
# No modulation happening here. | |
embedded_timestep = self.emb(timestep, **added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_dtype) | |
return self.linear(self.silu(embedded_timestep)), embedded_timestep | |
class AdaGroupNorm(nn.Module): | |
r""" | |
GroupNorm layer modified to incorporate timestep embeddings. | |
Parameters: | |
embedding_dim (`int`): The size of each embedding vector. | |
num_embeddings (`int`): The size of the embeddings dictionary. | |
num_groups (`int`): The number of groups to separate the channels into. | |
act_fn (`str`, *optional*, defaults to `None`): The activation function to use. | |
eps (`float`, *optional*, defaults to `1e-5`): The epsilon value to use for numerical stability. | |
""" | |
def __init__( | |
self, embedding_dim: int, out_dim: int, num_groups: int, act_fn: Optional[str] = None, eps: float = 1e-5 | |
): | |
super().__init__() | |
self.num_groups = num_groups | |
self.eps = eps | |
if act_fn is None: | |
self.act = None | |
else: | |
self.act = get_activation(act_fn) | |
self.linear = nn.Linear(embedding_dim, out_dim * 2) | |
def forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor: | |
if self.act: | |
emb = self.act(emb) | |
emb = self.linear(emb) | |
emb = emb[:, :, None, None] | |
scale, shift = emb.chunk(2, dim=1) | |
x = F.group_norm(x, self.num_groups, eps=self.eps) | |
x = x * (1 + scale) + shift | |
return x | |
class AdaLayerNormContinuous(nn.Module): | |
def __init__( | |
self, | |
embedding_dim: int, | |
conditioning_embedding_dim: int, | |
# NOTE: It is a bit weird that the norm layer can be configured to have scale and shift parameters | |
# because the output is immediately scaled and shifted by the projected conditioning embeddings. | |
# Note that AdaLayerNorm does not let the norm layer have scale and shift parameters. | |
# However, this is how it was implemented in the original code, and it's rather likely you should | |
# set `elementwise_affine` to False. | |
elementwise_affine=True, | |
eps=1e-5, | |
bias=True, | |
norm_type="layer_norm", | |
): | |
super().__init__() | |
self.silu = nn.SiLU() | |
self.linear = nn.Linear(conditioning_embedding_dim, embedding_dim * 2, bias=bias) | |
if norm_type == "layer_norm": | |
self.norm = LayerNorm(embedding_dim, eps, elementwise_affine, bias) | |
elif norm_type == "rms_norm": | |
self.norm = RMSNorm(embedding_dim, eps, elementwise_affine) | |
else: | |
raise ValueError(f"unknown norm_type {norm_type}") | |
def forward(self, x: torch.Tensor, conditioning_embedding: torch.Tensor) -> torch.Tensor: | |
emb = self.linear(self.silu(conditioning_embedding)) | |
scale, shift = torch.chunk(emb, 2, dim=1) | |
x = self.norm(x) * (1 + scale)[:, None, :] + shift[:, None, :] | |
return x | |
if is_torch_version(">=", "2.1.0"): | |
LayerNorm = nn.LayerNorm | |
else: | |
# Has optional bias parameter compared to torch layer norm | |
# TODO: replace with torch layernorm once min required torch version >= 2.1 | |
class LayerNorm(nn.Module): | |
def __init__(self, dim, eps: float = 1e-5, elementwise_affine: bool = True, bias: bool = True): | |
super().__init__() | |
self.eps = eps | |
if isinstance(dim, numbers.Integral): | |
dim = (dim,) | |
self.dim = torch.Size(dim) | |
if elementwise_affine: | |
self.weight = nn.Parameter(torch.ones(dim)) | |
self.bias = nn.Parameter(torch.zeros(dim)) if bias else None | |
else: | |
self.weight = None | |
self.bias = None | |
def forward(self, input): | |
return F.layer_norm(input, self.dim, self.weight, self.bias, self.eps) | |
class RMSNorm(nn.Module): | |
def __init__(self, dim, eps: float, elementwise_affine: bool = True): | |
super().__init__() | |
self.eps = eps | |
if isinstance(dim, numbers.Integral): | |
dim = (dim,) | |
self.dim = torch.Size(dim) | |
if elementwise_affine: | |
self.weight = nn.Parameter(torch.ones(dim)) | |
else: | |
self.weight = None | |
def forward(self, hidden_states): | |
input_dtype = hidden_states.dtype | |
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) | |
hidden_states = hidden_states * torch.rsqrt(variance + self.eps) | |
if self.weight is not None: | |
# convert into half-precision if necessary | |
if self.weight.dtype in [torch.float16, torch.bfloat16]: | |
hidden_states = hidden_states.to(self.weight.dtype) | |
hidden_states = hidden_states * self.weight | |
else: | |
hidden_states = hidden_states.to(input_dtype) | |
return hidden_states | |
class GlobalResponseNorm(nn.Module): | |
# Taken from https://github.com/facebookresearch/ConvNeXt-V2/blob/3608f67cc1dae164790c5d0aead7bf2d73d9719b/models/utils.py#L105 | |
def __init__(self, dim): | |
super().__init__() | |
self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim)) | |
self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim)) | |
def forward(self, x): | |
gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True) | |
nx = gx / (gx.mean(dim=-1, keepdim=True) + 1e-6) | |
return self.gamma * (x * nx) + self.beta + x | |