miaw1419 commited on
Commit
b84561d
1 Parent(s): 0ebf855

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -36
app.py CHANGED
@@ -16,9 +16,9 @@ from diffusers import StableDiffusionXLPipeline, DiffusionPipeline
16
  import anthropic
17
  import base64
18
  from datasets import load_dataset
 
19
 
20
  device = "cuda" if torch.cuda.is_available() else "cpu"
21
- print(device)
22
 
23
  word_list_dataset = load_dataset("EPFL-VILAB/4m-wordlist", data_files="list.txt", use_auth_token=True)
24
  word_list = word_list_dataset["train"]['text']
@@ -50,7 +50,6 @@ else:
50
  pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", use_safetensors=True)
51
  pipe = pipe.to(device)
52
 
53
-
54
  MAX_SEED = np.iinfo(np.int32).max
55
  MAX_IMAGE_SIZE = 1024
56
 
@@ -75,13 +74,10 @@ css="""
75
  }
76
  """
77
 
78
-
79
  if torch.cuda.is_available():
80
  power_device = "GPU"
81
  else:
82
  power_device = "CPU"
83
-
84
- from PIL import Image
85
 
86
  comment_images = [
87
  "comment_images/15.png",
@@ -158,7 +154,6 @@ examples = {
158
  "examples/A person reaching fo_0.png",
159
  "examples/A person reaching fo_1.png",
160
  "examples/A person reaching fo_2.png",
161
- #"examples/A person reaching fo_3.png",
162
  "examples/A person reaching fo_4.png",
163
  "examples/A person reaching fo_5.png",
164
  "examples/A person reaching fo_6.png",
@@ -170,7 +165,6 @@ examples = {
170
  "examples/Abandoned robot at t_0.png",
171
  "examples/Abandoned robot at t_1.png",
172
  "examples/Abandoned robot at t_2.png",
173
- #"examples/Abandoned robot at t_3.png",
174
  "examples/Abandoned robot at t_4.png",
175
  "examples/Abandoned robot at t_5.png",
176
  "examples/Abandoned robot at t_6.png",
@@ -182,7 +176,6 @@ examples = {
182
  "examples/Cityscape during a t_0.png",
183
  "examples/Cityscape during a t_1.png",
184
  "examples/Cityscape during a t_2.png",
185
- #"examples/Cityscape during a t_3.png",
186
  "examples/Cityscape during a t_4.png",
187
  "examples/Cityscape during a t_5.png",
188
  "examples/Cityscape during a t_6.png",
@@ -194,7 +187,6 @@ examples = {
194
  "examples/Human in a frame_0.png",
195
  "examples/Human in a frame_1.png",
196
  "examples/Human in a frame_2.png",
197
- #"examples/Human in a frame_3.png",
198
  "examples/Human in a frame_4.png",
199
  "examples/Human in a frame_5.png",
200
  "examples/Human in a frame_6.png",
@@ -206,7 +198,6 @@ examples = {
206
  "examples/Inside an abondoned _0.png",
207
  "examples/Inside an abondoned _1.png",
208
  "examples/Inside an abondoned _2.png",
209
- #"examples/Inside an abondoned _3.png",
210
  "examples/Inside an abondoned _4.png",
211
  "examples/Inside an abondoned _5.png",
212
  "examples/Inside an abondoned _6.png",
@@ -218,7 +209,6 @@ examples = {
218
  "examples/Lonely astronaut in _0.png",
219
  "examples/Lonely astronaut in _1.png",
220
  "examples/Lonely astronaut in _2.png",
221
- #"examples/Lonely astronaut in _3.png",
222
  "examples/Lonely astronaut in _4.png",
223
  "examples/Lonely astronaut in _5.png",
224
  "examples/Lonely astronaut in _6.png",
@@ -230,7 +220,6 @@ examples = {
230
  "examples/Painting of a lady_0.png",
231
  "examples/Painting of a lady_1.png",
232
  "examples/Painting of a lady_2.png",
233
- #"examples/Painting of a lady_3.png",
234
  "examples/Painting of a lady_4.png",
235
  "examples/Painting of a lady_5.png",
236
  "examples/Painting of a lady_6.png",
@@ -251,7 +240,6 @@ def submit_comment(comment):
251
  comments[comment_images[0]] = comment
252
  comment_images.append(comment_images[0])
253
  comment_images = comment_images[1:]
254
-
255
  image_index = (image_index + 1) % len(comment_images)
256
 
257
  elif comment_images[0] in comments:
@@ -310,7 +298,7 @@ def clear_comments():
310
  def extract_vp_from_vpe():
311
  global comments
312
  if len(comments) < 8:
313
- gr.Warning("Number of comments less than 8 could lead to errors.")
314
 
315
  prompt = """I will provide a set of artworks along with accompanying comments from a person. Analyze these artworks and the comments on them and identify artistic features such as present or mentioned colors, style, composition, mood, medium, texture, brushwork, lighting, shadow effects, perspective, and other noteworthy elements.
316
  Your task is to extract the artistic features the person likes and dislikes based on both the artworks' features and the person's comments. Focus solely on artistic aspects and refrain from considering subject matter.
@@ -351,8 +339,13 @@ Here are the images and their corresponding comments:
351
  generated_ids = vpe_model.generate(**inputs, max_new_tokens=2000, repetition_penalty=0.99, do_sample=False)
352
  generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
353
 
354
- gr.Info("Visual preference successfully extracted.")
355
- positive_vp, negative_vp = re.search('.* \nAssistant: Liked Art Features: (.*)\nDisliked Art Features: (.*)', generated_texts).groups()
 
 
 
 
 
356
 
357
  return positive_vp, negative_vp
358
 
@@ -361,7 +354,6 @@ def extract_vp():
361
  if valid_api == "":
362
  positive_vp, negative_vp = extract_vp_from_vpe()
363
 
364
-
365
  else:
366
  client = anthropic.Anthropic(
367
  api_key=valid_api,
@@ -369,31 +361,23 @@ def extract_vp():
369
 
370
  prompt = """**Objective:**
371
  Analyze a set of artworks and accompanying comments from a person to identify artistic features they like and dislike.
372
-
373
  **Steps:**
374
-
375
  1. **Analyze Artworks and Comments:**
376
  - Examine each artwork for artistic features such as colors, style, composition, mood, medium, texture, brushwork, lighting, shadow effects, perspective, and other noteworthy elements.
377
  - Review the accompanying comments to understand the person's preferences and opinions on these features.
378
-
379
  2. **Identify Preferences:**
380
  - Extract artistic features that the person likes and dislikes based on the artworks' features and the comments.
381
  - Focus solely on artistic aspects and ignore the subject matter.
382
  - Convert the art features mentioned in the comments to well-known synonyms if needed.
383
-
384
  3. **Resolve Ambiguous Preferences:**
385
  - If the person expresses a preference without clearly stating its category (e.g., "I like the style" without specifying which style), identify these specific features from the images directly.
386
  - Make the person's preference understandable and independednt of the artworks.
387
-
388
  4. **Output Format:**
389
  - Create two concise lists of keywords: one for features the person likes and another for features they dislike.
390
  - Ensure the lists are in keyword format, divided by commas, without using sentences.
391
  - Maintain detail and accuracy for all comments and images.
392
-
393
  **Your Task:**
394
-
395
  Follow the example format and ensure that your output consists of two lists of keywords summarizing the person's preferences based on the artworks and comments provided. Consider all comments and images comprehensively.
396
-
397
  **Example**: example START:
398
  """
399
  messages = [
@@ -448,8 +432,13 @@ Follow the example format and ensure that your output consists of two lists of k
448
  )
449
 
450
  generated_text = message.content[0].text
451
- positive_vp, negative_vp = re.search('.*Like.*:\n(.*)\n*Dislike.*:\n(.*)', generated_text).groups()
452
-
 
 
 
 
 
453
 
454
  return gr.Textbox(label="Liked visual attributes", lines=3, value=positive_vp, interactive=True), gr.Textbox(label="Disliked visual attributes", lines=1, value=negative_vp, interactive=True), gr.Button("Run personalized generation", scale=0, interactive=True, variant="primary")
455
 
@@ -539,8 +528,6 @@ def generate(prompt, vp_pos, vp_neg, slider, example_prompt, gallery, num_infere
539
  object_fit="contain",
540
  height=500)
541
 
542
-
543
-
544
  return image, example_prompt, gallery
545
 
546
  def change_vp(extract_vp):
@@ -690,9 +677,6 @@ with gr.Blocks(css=css, title="ViPer Demo", theme=gr.themes.Base()) as demo:
690
  slider = gr.Slider(value=0.85, minimum=0, maximum=1.5, label="Personalization degree", interactive=True)
691
 
692
  with gr.Row():
693
-
694
-
695
-
696
  prompt = gr.Dropdown(
697
  example_prompts, label="Prompt", info="Enter your prompt or choose an example prompts from the dropdown.", allow_custom_value=True, multiselect=False, show_label=False
698
  )
@@ -723,9 +707,7 @@ with gr.Blocks(css=css, title="ViPer Demo", theme=gr.themes.Base()) as demo:
723
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
724
 
725
  with gr.Row(elem_id="main-container"):
726
- with gr.Accordion("Images generated from the example prompts, but with different extracted preferences. The first image shows the non-personalized baseline generation.", open=False):
727
-
728
-
729
  example_prompt = gr.Markdown(f"Prompt: {example_prompts[0]}")
730
  gallery = gr.Gallery(
731
  value=examples[example_prompts[0]],
@@ -740,7 +722,6 @@ with gr.Blocks(css=css, title="ViPer Demo", theme=gr.themes.Base()) as demo:
740
  pre_prompt_button = gr.Button("⬅ Previous prompt", scale=1, interactive=True)
741
  next_prompt_button = gr.Button("Next prompt ➡", scale=1, interactive=True)
742
 
743
-
744
  submit_comment_button.click(
745
  fn = submit_comment,
746
  inputs = [comment],
 
16
  import anthropic
17
  import base64
18
  from datasets import load_dataset
19
+ from PIL import Image
20
 
21
  device = "cuda" if torch.cuda.is_available() else "cpu"
 
22
 
23
  word_list_dataset = load_dataset("EPFL-VILAB/4m-wordlist", data_files="list.txt", use_auth_token=True)
24
  word_list = word_list_dataset["train"]['text']
 
50
  pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", use_safetensors=True)
51
  pipe = pipe.to(device)
52
 
 
53
  MAX_SEED = np.iinfo(np.int32).max
54
  MAX_IMAGE_SIZE = 1024
55
 
 
74
  }
75
  """
76
 
 
77
  if torch.cuda.is_available():
78
  power_device = "GPU"
79
  else:
80
  power_device = "CPU"
 
 
81
 
82
  comment_images = [
83
  "comment_images/15.png",
 
154
  "examples/A person reaching fo_0.png",
155
  "examples/A person reaching fo_1.png",
156
  "examples/A person reaching fo_2.png",
 
157
  "examples/A person reaching fo_4.png",
158
  "examples/A person reaching fo_5.png",
159
  "examples/A person reaching fo_6.png",
 
165
  "examples/Abandoned robot at t_0.png",
166
  "examples/Abandoned robot at t_1.png",
167
  "examples/Abandoned robot at t_2.png",
 
168
  "examples/Abandoned robot at t_4.png",
169
  "examples/Abandoned robot at t_5.png",
170
  "examples/Abandoned robot at t_6.png",
 
176
  "examples/Cityscape during a t_0.png",
177
  "examples/Cityscape during a t_1.png",
178
  "examples/Cityscape during a t_2.png",
 
179
  "examples/Cityscape during a t_4.png",
180
  "examples/Cityscape during a t_5.png",
181
  "examples/Cityscape during a t_6.png",
 
187
  "examples/Human in a frame_0.png",
188
  "examples/Human in a frame_1.png",
189
  "examples/Human in a frame_2.png",
 
190
  "examples/Human in a frame_4.png",
191
  "examples/Human in a frame_5.png",
192
  "examples/Human in a frame_6.png",
 
198
  "examples/Inside an abondoned _0.png",
199
  "examples/Inside an abondoned _1.png",
200
  "examples/Inside an abondoned _2.png",
 
201
  "examples/Inside an abondoned _4.png",
202
  "examples/Inside an abondoned _5.png",
203
  "examples/Inside an abondoned _6.png",
 
209
  "examples/Lonely astronaut in _0.png",
210
  "examples/Lonely astronaut in _1.png",
211
  "examples/Lonely astronaut in _2.png",
 
212
  "examples/Lonely astronaut in _4.png",
213
  "examples/Lonely astronaut in _5.png",
214
  "examples/Lonely astronaut in _6.png",
 
220
  "examples/Painting of a lady_0.png",
221
  "examples/Painting of a lady_1.png",
222
  "examples/Painting of a lady_2.png",
 
223
  "examples/Painting of a lady_4.png",
224
  "examples/Painting of a lady_5.png",
225
  "examples/Painting of a lady_6.png",
 
240
  comments[comment_images[0]] = comment
241
  comment_images.append(comment_images[0])
242
  comment_images = comment_images[1:]
 
243
  image_index = (image_index + 1) % len(comment_images)
244
 
245
  elif comment_images[0] in comments:
 
298
  def extract_vp_from_vpe():
299
  global comments
300
  if len(comments) < 8:
301
+ gr.Warning("Fewer than 8 comments may lead to errors.")
302
 
303
  prompt = """I will provide a set of artworks along with accompanying comments from a person. Analyze these artworks and the comments on them and identify artistic features such as present or mentioned colors, style, composition, mood, medium, texture, brushwork, lighting, shadow effects, perspective, and other noteworthy elements.
304
  Your task is to extract the artistic features the person likes and dislikes based on both the artworks' features and the person's comments. Focus solely on artistic aspects and refrain from considering subject matter.
 
339
  generated_ids = vpe_model.generate(**inputs, max_new_tokens=2000, repetition_penalty=0.99, do_sample=False)
340
  generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
341
 
342
+ if re.match(r"(.|\n)*Assistant: Liked Art Features: (.|\n)*Disliked Art Features: (.|\n)*", generated_texts):
343
+ positive_vp, negative_vp = re.search('.* \nAssistant: Liked Art Features: (.*)\nDisliked Art Features: (.*)', generated_texts).groups()
344
+ gr.Info("Visual preference successfully extracted.")
345
+ else:
346
+ positive_vp = ""
347
+ negative_vp = ""
348
+ gr.Warning("VP extraction failed: Please comment on more images.")
349
 
350
  return positive_vp, negative_vp
351
 
 
354
  if valid_api == "":
355
  positive_vp, negative_vp = extract_vp_from_vpe()
356
 
 
357
  else:
358
  client = anthropic.Anthropic(
359
  api_key=valid_api,
 
361
 
362
  prompt = """**Objective:**
363
  Analyze a set of artworks and accompanying comments from a person to identify artistic features they like and dislike.
 
364
  **Steps:**
 
365
  1. **Analyze Artworks and Comments:**
366
  - Examine each artwork for artistic features such as colors, style, composition, mood, medium, texture, brushwork, lighting, shadow effects, perspective, and other noteworthy elements.
367
  - Review the accompanying comments to understand the person's preferences and opinions on these features.
 
368
  2. **Identify Preferences:**
369
  - Extract artistic features that the person likes and dislikes based on the artworks' features and the comments.
370
  - Focus solely on artistic aspects and ignore the subject matter.
371
  - Convert the art features mentioned in the comments to well-known synonyms if needed.
 
372
  3. **Resolve Ambiguous Preferences:**
373
  - If the person expresses a preference without clearly stating its category (e.g., "I like the style" without specifying which style), identify these specific features from the images directly.
374
  - Make the person's preference understandable and independednt of the artworks.
 
375
  4. **Output Format:**
376
  - Create two concise lists of keywords: one for features the person likes and another for features they dislike.
377
  - Ensure the lists are in keyword format, divided by commas, without using sentences.
378
  - Maintain detail and accuracy for all comments and images.
 
379
  **Your Task:**
 
380
  Follow the example format and ensure that your output consists of two lists of keywords summarizing the person's preferences based on the artworks and comments provided. Consider all comments and images comprehensively.
 
381
  **Example**: example START:
382
  """
383
  messages = [
 
432
  )
433
 
434
  generated_text = message.content[0].text
435
+ if re.match(r"(.|\n)*Like.*:(.|\n)*Dislike.(.|\n)*", generated_texts):
436
+ positive_vp, negative_vp = re.search('.*Like.*:\n(.*)\n*Dislike.*:\n(.*)', generated_text).groups()
437
+ gr.Info("Visual preference successfully extracted.")
438
+ else:
439
+ positive_vp = ""
440
+ negative_vp = ""
441
+ gr.Warning("VP extraction failed: Please comment on more images.")
442
 
443
  return gr.Textbox(label="Liked visual attributes", lines=3, value=positive_vp, interactive=True), gr.Textbox(label="Disliked visual attributes", lines=1, value=negative_vp, interactive=True), gr.Button("Run personalized generation", scale=0, interactive=True, variant="primary")
444
 
 
528
  object_fit="contain",
529
  height=500)
530
 
 
 
531
  return image, example_prompt, gallery
532
 
533
  def change_vp(extract_vp):
 
677
  slider = gr.Slider(value=0.85, minimum=0, maximum=1.5, label="Personalization degree", interactive=True)
678
 
679
  with gr.Row():
 
 
 
680
  prompt = gr.Dropdown(
681
  example_prompts, label="Prompt", info="Enter your prompt or choose an example prompts from the dropdown.", allow_custom_value=True, multiselect=False, show_label=False
682
  )
 
707
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
708
 
709
  with gr.Row(elem_id="main-container"):
710
+ with gr.Accordion("Images generated from the example prompts, but with different extracted preferences. The first image shows the non-personalized baseline generation.", open=False):
 
 
711
  example_prompt = gr.Markdown(f"Prompt: {example_prompts[0]}")
712
  gallery = gr.Gallery(
713
  value=examples[example_prompts[0]],
 
722
  pre_prompt_button = gr.Button("⬅ Previous prompt", scale=1, interactive=True)
723
  next_prompt_button = gr.Button("Next prompt ➡", scale=1, interactive=True)
724
 
 
725
  submit_comment_button.click(
726
  fn = submit_comment,
727
  inputs = [comment],