# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ...configuration_utils import ConfigMixin, register_to_config from ...loaders import FromOriginalVAEMixin from ...utils import is_torch_version from ...utils.accelerate_utils import apply_forward_hook from ..attention_processor import CROSS_ATTENTION_PROCESSORS, AttentionProcessor, AttnProcessor from ..modeling_outputs import AutoencoderKLOutput from ..modeling_utils import ModelMixin from ..unets.unet_3d_blocks import MidBlockTemporalDecoder, UpBlockTemporalDecoder from .vae import DecoderOutput, DiagonalGaussianDistribution, Encoder class TemporalDecoder(nn.Module): def __init__( self, in_channels: int = 4, out_channels: int = 3, block_out_channels: Tuple[int] = (128, 256, 512, 512), layers_per_block: int = 2, ): super().__init__() self.layers_per_block = layers_per_block self.conv_in = nn.Conv2d(in_channels, block_out_channels[-1], kernel_size=3, stride=1, padding=1) self.mid_block = MidBlockTemporalDecoder( num_layers=self.layers_per_block, in_channels=block_out_channels[-1], out_channels=block_out_channels[-1], attention_head_dim=block_out_channels[-1], ) # up self.up_blocks = nn.ModuleList([]) reversed_block_out_channels = list(reversed(block_out_channels)) output_channel = reversed_block_out_channels[0] for i in range(len(block_out_channels)): prev_output_channel = output_channel output_channel = reversed_block_out_channels[i] is_final_block = i == len(block_out_channels) - 1 up_block = UpBlockTemporalDecoder( num_layers=self.layers_per_block + 1, in_channels=prev_output_channel, out_channels=output_channel, add_upsample=not is_final_block, ) self.up_blocks.append(up_block) prev_output_channel = output_channel self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=32, eps=1e-6) self.conv_act = nn.SiLU() self.conv_out = torch.nn.Conv2d( in_channels=block_out_channels[0], out_channels=out_channels, kernel_size=3, padding=1, ) conv_out_kernel_size = (3, 1, 1) padding = [int(k // 2) for k in conv_out_kernel_size] self.time_conv_out = torch.nn.Conv3d( in_channels=out_channels, out_channels=out_channels, kernel_size=conv_out_kernel_size, padding=padding, ) self.gradient_checkpointing = False def forward( self, sample: torch.FloatTensor, image_only_indicator: torch.FloatTensor, num_frames: int = 1, ) -> torch.FloatTensor: r"""The forward method of the `Decoder` class.""" sample = self.conv_in(sample) upscale_dtype = next(iter(self.up_blocks.parameters())).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs) return custom_forward if is_torch_version(">=", "1.11.0"): # middle sample = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block), sample, image_only_indicator, use_reentrant=False, ) sample = sample.to(upscale_dtype) # up for up_block in self.up_blocks: sample = torch.utils.checkpoint.checkpoint( create_custom_forward(up_block), sample, image_only_indicator, use_reentrant=False, ) else: # middle sample = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block), sample, image_only_indicator, ) sample = sample.to(upscale_dtype) # up for up_block in self.up_blocks: sample = torch.utils.checkpoint.checkpoint( create_custom_forward(up_block), sample, image_only_indicator, ) else: # middle sample = self.mid_block(sample, image_only_indicator=image_only_indicator) sample = sample.to(upscale_dtype) # up for up_block in self.up_blocks: sample = up_block(sample, image_only_indicator=image_only_indicator) # post-process sample = self.conv_norm_out(sample) sample = self.conv_act(sample) sample = self.conv_out(sample) batch_frames, channels, height, width = sample.shape batch_size = batch_frames // num_frames sample = sample[None, :].reshape(batch_size, num_frames, channels, height, width).permute(0, 2, 1, 3, 4) sample = self.time_conv_out(sample) sample = sample.permute(0, 2, 1, 3, 4).reshape(batch_frames, channels, height, width) return sample class AutoencoderKLTemporalDecoder(ModelMixin, ConfigMixin, FromOriginalVAEMixin): r""" A VAE model with KL loss for encoding images into latents and decoding latent representations into images. This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented for all models (such as downloading or saving). Parameters: in_channels (int, *optional*, defaults to 3): Number of channels in the input image. out_channels (int, *optional*, defaults to 3): Number of channels in the output. down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`): Tuple of downsample block types. block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`): Tuple of block output channels. layers_per_block: (`int`, *optional*, defaults to 1): Number of layers per block. latent_channels (`int`, *optional*, defaults to 4): Number of channels in the latent space. sample_size (`int`, *optional*, defaults to `32`): Sample input size. scaling_factor (`float`, *optional*, defaults to 0.18215): The component-wise standard deviation of the trained latent space computed using the first batch of the training set. This is used to scale the latent space to have unit variance when training the diffusion model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1 / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper. force_upcast (`bool`, *optional*, default to `True`): If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE can be fine-tuned / trained to a lower range without loosing too much precision in which case `force_upcast` can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix """ _supports_gradient_checkpointing = True @register_to_config def __init__( self, in_channels: int = 3, out_channels: int = 3, down_block_types: Tuple[str] = ("DownEncoderBlock2D",), block_out_channels: Tuple[int] = (64,), layers_per_block: int = 1, latent_channels: int = 4, sample_size: int = 32, scaling_factor: float = 0.18215, force_upcast: float = True, ): super().__init__() # pass init params to Encoder self.encoder = Encoder( in_channels=in_channels, out_channels=latent_channels, down_block_types=down_block_types, block_out_channels=block_out_channels, layers_per_block=layers_per_block, double_z=True, ) # pass init params to Decoder self.decoder = TemporalDecoder( in_channels=latent_channels, out_channels=out_channels, block_out_channels=block_out_channels, layers_per_block=layers_per_block, ) self.quant_conv = nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1) sample_size = ( self.config.sample_size[0] if isinstance(self.config.sample_size, (list, tuple)) else self.config.sample_size ) self.tile_latent_min_size = int(sample_size / (2 ** (len(self.config.block_out_channels) - 1))) self.tile_overlap_factor = 0.25 def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, (Encoder, TemporalDecoder)): module.gradient_checkpointing = value @property # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors def attn_processors(self) -> Dict[str, AttentionProcessor]: r""" Returns: `dict` of attention processors: A dictionary containing all attention processors used in the model with indexed by its weight name. """ # set recursively processors = {} def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): if hasattr(module, "get_processor"): processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True) for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) return processors for name, module in self.named_children(): fn_recursive_add_processors(name, module, processors) return processors # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): r""" Sets the attention processor to use to compute attention. Parameters: processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): The instantiated processor class or a dictionary of processor classes that will be set as the processor for **all** `Attention` layers. If `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors. """ count = len(self.attn_processors.keys()) if isinstance(processor, dict) and len(processor) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): if hasattr(module, "set_processor"): if not isinstance(processor, dict): module.set_processor(processor) else: module.set_processor(processor.pop(f"{name}.processor")) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) for name, module in self.named_children(): fn_recursive_attn_processor(name, module, processor) def set_default_attn_processor(self): """ Disables custom attention processors and sets the default attention implementation. """ if all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): processor = AttnProcessor() else: raise ValueError( f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}" ) self.set_attn_processor(processor) @apply_forward_hook def encode( self, x: torch.FloatTensor, return_dict: bool = True ) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]: """ Encode a batch of images into latents. Args: x (`torch.FloatTensor`): Input batch of images. return_dict (`bool`, *optional*, defaults to `True`): Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple. Returns: The latent representations of the encoded images. If `return_dict` is True, a [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned. """ h = self.encoder(x) moments = self.quant_conv(h) posterior = DiagonalGaussianDistribution(moments) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=posterior) @apply_forward_hook def decode( self, z: torch.FloatTensor, num_frames: int, return_dict: bool = True, ) -> Union[DecoderOutput, torch.FloatTensor]: """ Decode a batch of images. Args: z (`torch.FloatTensor`): Input batch of latent vectors. return_dict (`bool`, *optional*, defaults to `True`): Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple. Returns: [`~models.vae.DecoderOutput`] or `tuple`: If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is returned. """ batch_size = z.shape[0] // num_frames image_only_indicator = torch.zeros(batch_size, num_frames, dtype=z.dtype, device=z.device) decoded = self.decoder(z, num_frames=num_frames, image_only_indicator=image_only_indicator) if not return_dict: return (decoded,) return DecoderOutput(sample=decoded) def forward( self, sample: torch.FloatTensor, sample_posterior: bool = False, return_dict: bool = True, generator: Optional[torch.Generator] = None, num_frames: int = 1, ) -> Union[DecoderOutput, torch.FloatTensor]: r""" Args: sample (`torch.FloatTensor`): Input sample. sample_posterior (`bool`, *optional*, defaults to `False`): Whether to sample from the posterior. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`DecoderOutput`] instead of a plain tuple. """ x = sample posterior = self.encode(x).latent_dist if sample_posterior: z = posterior.sample(generator=generator) else: z = posterior.mode() dec = self.decode(z, num_frames=num_frames).sample if not return_dict: return (dec,) return DecoderOutput(sample=dec)