File size: 17,037 Bytes
69a5bd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
# Ultralytics YOLO 🚀, AGPL-3.0 license
"""
Run prediction on images, videos, directories, globs, YouTube, webcam, streams, etc.

Usage - sources:
    $ yolo mode=predict model=yolov8n.pt source=0                               # webcam
                                                img.jpg                         # image
                                                vid.mp4                         # video
                                                screen                          # screenshot
                                                path/                           # directory
                                                list.txt                        # list of images
                                                list.streams                    # list of streams
                                                'path/*.jpg'                    # glob
                                                'https://youtu.be/LNwODJXcvt4'  # YouTube
                                                'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP, TCP stream

Usage - formats:
    $ yolo mode=predict model=yolov8n.pt                 # PyTorch
                              yolov8n.torchscript        # TorchScript
                              yolov8n.onnx               # ONNX Runtime or OpenCV DNN with dnn=True
                              yolov8n_openvino_model     # OpenVINO
                              yolov8n.engine             # TensorRT
                              yolov8n.mlpackage          # CoreML (macOS-only)
                              yolov8n_saved_model        # TensorFlow SavedModel
                              yolov8n.pb                 # TensorFlow GraphDef
                              yolov8n.tflite             # TensorFlow Lite
                              yolov8n_edgetpu.tflite     # TensorFlow Edge TPU
                              yolov8n_paddle_model       # PaddlePaddle
                              yolov8n_ncnn_model         # NCNN
"""

import platform
import re
import threading
from pathlib import Path

import cv2
import numpy as np
import torch

from ultralytics.cfg import get_cfg, get_save_dir
from ultralytics.data import load_inference_source
from ultralytics.data.augment import LetterBox, classify_transforms
from ultralytics.nn.autobackend import AutoBackend
from ultralytics.utils import DEFAULT_CFG, LOGGER, MACOS, WINDOWS, callbacks, colorstr, ops
from ultralytics.utils.checks import check_imgsz, check_imshow
from ultralytics.utils.files import increment_path
from ultralytics.utils.torch_utils import select_device, smart_inference_mode

STREAM_WARNING = """
WARNING ⚠️ inference results will accumulate in RAM unless `stream=True` is passed, causing potential out-of-memory
errors for large sources or long-running streams and videos. See https://docs.ultralytics.com/modes/predict/ for help.

Example:
    results = model(source=..., stream=True)  # generator of Results objects
    for r in results:
        boxes = r.boxes  # Boxes object for bbox outputs
        masks = r.masks  # Masks object for segment masks outputs
        probs = r.probs  # Class probabilities for classification outputs
"""


class BasePredictor:
    """
    BasePredictor.

    A base class for creating predictors.

    Attributes:
        args (SimpleNamespace): Configuration for the predictor.
        save_dir (Path): Directory to save results.
        done_warmup (bool): Whether the predictor has finished setup.
        model (nn.Module): Model used for prediction.
        data (dict): Data configuration.
        device (torch.device): Device used for prediction.
        dataset (Dataset): Dataset used for prediction.
        vid_writer (dict): Dictionary of {save_path: video_writer, ...} writer for saving video output.
    """

    def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
        """
        Initializes the BasePredictor class.

        Args:
            cfg (str, optional): Path to a configuration file. Defaults to DEFAULT_CFG.
            overrides (dict, optional): Configuration overrides. Defaults to None.
        """
        self.args = get_cfg(cfg, overrides)
        self.save_dir = get_save_dir(self.args)
        if self.args.conf is None:
            self.args.conf = 0.25  # default conf=0.25
        self.done_warmup = False
        if self.args.show:
            self.args.show = check_imshow(warn=True)

        # Usable if setup is done
        self.model = None
        self.data = self.args.data  # data_dict
        self.imgsz = None
        self.device = None
        self.dataset = None
        self.vid_writer = {}  # dict of {save_path: video_writer, ...}
        self.plotted_img = None
        self.source_type = None
        self.seen = 0
        self.windows = []
        self.batch = None
        self.results = None
        self.transforms = None
        self.callbacks = _callbacks or callbacks.get_default_callbacks()
        self.txt_path = None
        self._lock = threading.Lock()  # for automatic thread-safe inference
        callbacks.add_integration_callbacks(self)

    def preprocess(self, im):
        """
        Prepares input image before inference.

        Args:
            im (torch.Tensor | List(np.ndarray)): BCHW for tensor, [(HWC) x B] for list.
        """
        not_tensor = not isinstance(im, torch.Tensor)
        if not_tensor:
            im = np.stack(self.pre_transform(im))
            im = im[..., ::-1].transpose((0, 3, 1, 2))  # BGR to RGB, BHWC to BCHW, (n, 3, h, w)
            im = np.ascontiguousarray(im)  # contiguous
            im = torch.from_numpy(im)

        im = im.to(self.device)
        im = im.half() if self.model.fp16 else im.float()  # uint8 to fp16/32
        if not_tensor:
            im /= 255  # 0 - 255 to 0.0 - 1.0
        return im

    def inference(self, im, *args, **kwargs):
        """Runs inference on a given image using the specified model and arguments."""
        visualize = (
            increment_path(self.save_dir / Path(self.batch[0][0]).stem, mkdir=True)
            if self.args.visualize and (not self.source_type.tensor)
            else False
        )
        return self.model(im, augment=self.args.augment, visualize=visualize, embed=self.args.embed, *args, **kwargs)

    def pre_transform(self, im):
        """
        Pre-transform input image before inference.

        Args:
            im (List(np.ndarray)): (N, 3, h, w) for tensor, [(h, w, 3) x N] for list.

        Returns:
            (list): A list of transformed images.
        """
        same_shapes = len({x.shape for x in im}) == 1
        letterbox = LetterBox(self.imgsz, auto=same_shapes and self.model.pt, stride=self.model.stride)
        return [letterbox(image=x) for x in im]

    def postprocess(self, preds, img, orig_imgs):
        """Post-processes predictions for an image and returns them."""
        return preds

    def __call__(self, source=None, model=None, stream=False, *args, **kwargs):
        """Performs inference on an image or stream."""
        self.stream = stream
        if stream:
            return self.stream_inference(source, model, *args, **kwargs)
        else:
            return list(self.stream_inference(source, model, *args, **kwargs))  # merge list of Result into one

    def predict_cli(self, source=None, model=None):
        """
        Method used for CLI prediction.

        It uses always generator as outputs as not required by CLI mode.
        """
        gen = self.stream_inference(source, model)
        for _ in gen:  # noqa, running CLI inference without accumulating any outputs (do not modify)
            pass

    def setup_source(self, source):
        """Sets up source and inference mode."""
        self.imgsz = check_imgsz(self.args.imgsz, stride=self.model.stride, min_dim=2)  # check image size
        self.transforms = (
            getattr(
                self.model.model,
                "transforms",
                classify_transforms(self.imgsz[0], crop_fraction=self.args.crop_fraction),
            )
            if self.args.task == "classify"
            else None
        )
        self.dataset = load_inference_source(
            source=source,
            batch=self.args.batch,
            vid_stride=self.args.vid_stride,
            buffer=self.args.stream_buffer,
        )
        self.source_type = self.dataset.source_type
        if not getattr(self, "stream", True) and (
            self.source_type.stream
            or self.source_type.screenshot
            or len(self.dataset) > 1000  # many images
            or any(getattr(self.dataset, "video_flag", [False]))
        ):  # videos
            LOGGER.warning(STREAM_WARNING)
        self.vid_writer = {}

    @smart_inference_mode()
    def stream_inference(self, source=None, model=None, *args, **kwargs):
        """Streams real-time inference on camera feed and saves results to file."""
        if self.args.verbose:
            LOGGER.info("")

        # Setup model
        if not self.model:
            self.setup_model(model)

        with self._lock:  # for thread-safe inference
            # Setup source every time predict is called
            self.setup_source(source if source is not None else self.args.source)

            # Check if save_dir/ label file exists
            if self.args.save or self.args.save_txt:
                (self.save_dir / "labels" if self.args.save_txt else self.save_dir).mkdir(parents=True, exist_ok=True)

            # Warmup model
            if not self.done_warmup:
                self.model.warmup(imgsz=(1 if self.model.pt or self.model.triton else self.dataset.bs, 3, *self.imgsz))
                self.done_warmup = True

            self.seen, self.windows, self.batch = 0, [], None
            profilers = (
                ops.Profile(device=self.device),
                ops.Profile(device=self.device),
                ops.Profile(device=self.device),
            )
            self.run_callbacks("on_predict_start")
            for self.batch in self.dataset:
                self.run_callbacks("on_predict_batch_start")
                paths, im0s, s = self.batch

                # Preprocess
                with profilers[0]:
                    im = self.preprocess(im0s)

                # Inference
                with profilers[1]:
                    preds = self.inference(im, *args, **kwargs)
                    if self.args.embed:
                        yield from [preds] if isinstance(preds, torch.Tensor) else preds  # yield embedding tensors
                        continue

                # Postprocess
                with profilers[2]:
                    self.results = self.postprocess(preds, im, im0s)
                self.run_callbacks("on_predict_postprocess_end")

                # Visualize, save, write results
                n = len(im0s)
                for i in range(n):
                    self.seen += 1
                    self.results[i].speed = {
                        "preprocess": profilers[0].dt * 1e3 / n,
                        "inference": profilers[1].dt * 1e3 / n,
                        "postprocess": profilers[2].dt * 1e3 / n,
                    }
                    if self.args.verbose or self.args.save or self.args.save_txt or self.args.show:
                        s[i] += self.write_results(i, Path(paths[i]), im, s)

                # Print batch results
                if self.args.verbose:
                    LOGGER.info("\n".join(s))

                self.run_callbacks("on_predict_batch_end")
                yield from self.results

        # Release assets
        for v in self.vid_writer.values():
            if isinstance(v, cv2.VideoWriter):
                v.release()

        # Print final results
        if self.args.verbose and self.seen:
            t = tuple(x.t / self.seen * 1e3 for x in profilers)  # speeds per image
            LOGGER.info(
                f"Speed: %.1fms preprocess, %.1fms inference, %.1fms postprocess per image at shape "
                f"{(min(self.args.batch, self.seen), 3, *im.shape[2:])}" % t
            )
        if self.args.save or self.args.save_txt or self.args.save_crop:
            nl = len(list(self.save_dir.glob("labels/*.txt")))  # number of labels
            s = f"\n{nl} label{'s' * (nl > 1)} saved to {self.save_dir / 'labels'}" if self.args.save_txt else ""
            LOGGER.info(f"Results saved to {colorstr('bold', self.save_dir)}{s}")
        self.run_callbacks("on_predict_end")

    def setup_model(self, model, verbose=True):
        """Initialize YOLO model with given parameters and set it to evaluation mode."""
        self.model = AutoBackend(
            weights=model or self.args.model,
            device=select_device(self.args.device, verbose=verbose),
            dnn=self.args.dnn,
            data=self.args.data,
            fp16=self.args.half,
            batch=self.args.batch,
            fuse=True,
            verbose=verbose,
        )

        self.device = self.model.device  # update device
        self.args.half = self.model.fp16  # update half
        self.model.eval()

    def write_results(self, i, p, im, s):
        """Write inference results to a file or directory."""
        string = ""  # print string
        if len(im.shape) == 3:
            im = im[None]  # expand for batch dim
        if self.source_type.stream or self.source_type.from_img or self.source_type.tensor:  # batch_size >= 1
            string += f"{i}: "
            frame = self.dataset.count
        else:
            match = re.search(r"frame (\d+)/", s[i])
            frame = int(match.group(1)) if match else None  # 0 if frame undetermined

        self.txt_path = self.save_dir / "labels" / (p.stem + ("" if self.dataset.mode == "image" else f"_{frame}"))
        string += "%gx%g " % im.shape[2:]
        result = self.results[i]
        result.save_dir = self.save_dir.__str__()  # used in other locations
        string += result.verbose() + f"{result.speed['inference']:.1f}ms"

        # Add predictions to image
        if self.args.save or self.args.show:
            self.plotted_img = result.plot(
                line_width=self.args.line_width,
                boxes=self.args.show_boxes,
                conf=self.args.show_conf,
                labels=self.args.show_labels,
                im_gpu=None if self.args.retina_masks else im[i],
            )

        # Save results
        if self.args.save_txt:
            result.save_txt(f"{self.txt_path}.txt", save_conf=self.args.save_conf)
        if self.args.save_crop:
            result.save_crop(save_dir=self.save_dir / "crops", file_name=self.txt_path.stem)
        if self.args.show:
            self.show(str(p))
        if self.args.save:
            self.save_predicted_images(str(self.save_dir / (p.name or "tmp.jpg")), frame)

        return string

    def save_predicted_images(self, save_path="", frame=0):
        """Save video predictions as mp4 at specified path."""
        im = self.plotted_img

        # Save videos and streams
        if self.dataset.mode in {"stream", "video"}:
            fps = self.dataset.fps if self.dataset.mode == "video" else 30
            frames_path = f'{save_path.split(".", 1)[0]}_frames/'
            if save_path not in self.vid_writer:  # new video
                if self.args.save_frames:
                    Path(frames_path).mkdir(parents=True, exist_ok=True)
                suffix, fourcc = (".mp4", "avc1") if MACOS else (".avi", "WMV2") if WINDOWS else (".avi", "MJPG")
                self.vid_writer[save_path] = cv2.VideoWriter(
                    filename=str(Path(save_path).with_suffix(suffix)),
                    fourcc=cv2.VideoWriter_fourcc(*fourcc),
                    fps=fps,  # integer required, floats produce error in MP4 codec
                    frameSize=(im.shape[1], im.shape[0]),  # (width, height)
                )

            # Save video
            self.vid_writer[save_path].write(im)
            if self.args.save_frames:
                cv2.imwrite(f"{frames_path}{frame}.jpg", im)

        # Save images
        else:
            cv2.imwrite(save_path, im)

    def show(self, p=""):
        """Display an image in a window using OpenCV imshow()."""
        im = self.plotted_img
        if platform.system() == "Linux" and p not in self.windows:
            self.windows.append(p)
            cv2.namedWindow(p, cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO)  # allow window resize (Linux)
            cv2.resizeWindow(p, im.shape[1], im.shape[0])  # (width, height)
        cv2.imshow(p, im)
        cv2.waitKey(300 if self.dataset.mode == "image" else 1)  # 1 millisecond

    def run_callbacks(self, event: str):
        """Runs all registered callbacks for a specific event."""
        for callback in self.callbacks.get(event, []):
            callback(self)

    def add_callback(self, event: str, func):
        """Add callback."""
        self.callbacks[event].append(func)