File size: 34,595 Bytes
69a5bd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
# Ultralytics YOLO 🚀, AGPL-3.0 license
"""
Train a model on a dataset.

Usage:
    $ yolo mode=train model=yolov8n.pt data=coco128.yaml imgsz=640 epochs=100 batch=16
"""

import math
import os
import subprocess
import time
import warnings
from copy import deepcopy
from datetime import datetime, timedelta
from pathlib import Path

import numpy as np
import torch
from torch import distributed as dist
from torch import nn, optim

from ultralytics.cfg import get_cfg, get_save_dir
from ultralytics.data.utils import check_cls_dataset, check_det_dataset
from ultralytics.nn.tasks import attempt_load_one_weight, attempt_load_weights
from ultralytics.utils import (
    DEFAULT_CFG,
    LOGGER,
    RANK,
    TQDM,
    __version__,
    callbacks,
    clean_url,
    colorstr,
    emojis,
    yaml_save,
)
from ultralytics.utils.autobatch import check_train_batch_size
from ultralytics.utils.checks import check_amp, check_file, check_imgsz, check_model_file_from_stem, print_args
from ultralytics.utils.dist import ddp_cleanup, generate_ddp_command
from ultralytics.utils.files import get_latest_run
from ultralytics.utils.torch_utils import (
    EarlyStopping,
    ModelEMA,
    de_parallel,
    init_seeds,
    one_cycle,
    select_device,
    strip_optimizer,
)


class BaseTrainer:
    """
    BaseTrainer.

    A base class for creating trainers.

    Attributes:
        args (SimpleNamespace): Configuration for the trainer.
        validator (BaseValidator): Validator instance.
        model (nn.Module): Model instance.
        callbacks (defaultdict): Dictionary of callbacks.
        save_dir (Path): Directory to save results.
        wdir (Path): Directory to save weights.
        last (Path): Path to the last checkpoint.
        best (Path): Path to the best checkpoint.
        save_period (int): Save checkpoint every x epochs (disabled if < 1).
        batch_size (int): Batch size for training.
        epochs (int): Number of epochs to train for.
        start_epoch (int): Starting epoch for training.
        device (torch.device): Device to use for training.
        amp (bool): Flag to enable AMP (Automatic Mixed Precision).
        scaler (amp.GradScaler): Gradient scaler for AMP.
        data (str): Path to data.
        trainset (torch.utils.data.Dataset): Training dataset.
        testset (torch.utils.data.Dataset): Testing dataset.
        ema (nn.Module): EMA (Exponential Moving Average) of the model.
        resume (bool): Resume training from a checkpoint.
        lf (nn.Module): Loss function.
        scheduler (torch.optim.lr_scheduler._LRScheduler): Learning rate scheduler.
        best_fitness (float): The best fitness value achieved.
        fitness (float): Current fitness value.
        loss (float): Current loss value.
        tloss (float): Total loss value.
        loss_names (list): List of loss names.
        csv (Path): Path to results CSV file.
    """

    def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
        """
        Initializes the BaseTrainer class.

        Args:
            cfg (str, optional): Path to a configuration file. Defaults to DEFAULT_CFG.
            overrides (dict, optional): Configuration overrides. Defaults to None.
        """
        self.args = get_cfg(cfg, overrides)
        self.check_resume(overrides)
        self.device = select_device(self.args.device, self.args.batch)
        self.validator = None
        self.metrics = None
        self.plots = {}
        init_seeds(self.args.seed + 1 + RANK, deterministic=self.args.deterministic)

        # Dirs
        self.save_dir = get_save_dir(self.args)
        self.args.name = self.save_dir.name  # update name for loggers
        self.wdir = self.save_dir / "weights"  # weights dir
        if RANK in (-1, 0):
            self.wdir.mkdir(parents=True, exist_ok=True)  # make dir
            self.args.save_dir = str(self.save_dir)
            yaml_save(self.save_dir / "args.yaml", vars(self.args))  # save run args
        self.last, self.best = self.wdir / "last.pt", self.wdir / "best.pt"  # checkpoint paths
        self.save_period = self.args.save_period

        self.batch_size = self.args.batch
        self.epochs = self.args.epochs
        self.start_epoch = 0
        if RANK == -1:
            print_args(vars(self.args))

        # Device
        if self.device.type in ("cpu", "mps"):
            self.args.workers = 0  # faster CPU training as time dominated by inference, not dataloading

        # Model and Dataset
        self.model = check_model_file_from_stem(self.args.model)  # add suffix, i.e. yolov8n -> yolov8n.pt
        try:
            if self.args.task == "classify":
                self.data = check_cls_dataset(self.args.data)
            elif self.args.data.split(".")[-1] in ("yaml", "yml") or self.args.task in (
                "detect",
                "segment",
                "pose",
                "obb",
            ):
                self.data = check_det_dataset(self.args.data)
                if "yaml_file" in self.data:
                    self.args.data = self.data["yaml_file"]  # for validating 'yolo train data=url.zip' usage
        except Exception as e:
            raise RuntimeError(emojis(f"Dataset '{clean_url(self.args.data)}' error ❌ {e}")) from e

        self.trainset, self.testset = self.get_dataset(self.data)
        self.ema = None

        # Optimization utils init
        self.lf = None
        self.scheduler = None

        # Epoch level metrics
        self.best_fitness = None
        self.fitness = None
        self.loss = None
        self.tloss = None
        self.loss_names = ["Loss"]
        self.csv = self.save_dir / "results.csv"
        self.plot_idx = [0, 1, 2]

        # Callbacks
        self.callbacks = _callbacks or callbacks.get_default_callbacks()
        if RANK in (-1, 0):
            callbacks.add_integration_callbacks(self)

    def add_callback(self, event: str, callback):
        """Appends the given callback."""
        self.callbacks[event].append(callback)

    def set_callback(self, event: str, callback):
        """Overrides the existing callbacks with the given callback."""
        self.callbacks[event] = [callback]

    def run_callbacks(self, event: str):
        """Run all existing callbacks associated with a particular event."""
        for callback in self.callbacks.get(event, []):
            callback(self)

    def train(self):
        """Allow device='', device=None on Multi-GPU systems to default to device=0."""
        if isinstance(self.args.device, str) and len(self.args.device):  # i.e. device='0' or device='0,1,2,3'
            world_size = len(self.args.device.split(","))
        elif isinstance(self.args.device, (tuple, list)):  # i.e. device=[0, 1, 2, 3] (multi-GPU from CLI is list)
            world_size = len(self.args.device)
        elif torch.cuda.is_available():  # i.e. device=None or device='' or device=number
            world_size = 1  # default to device 0
        else:  # i.e. device='cpu' or 'mps'
            world_size = 0

        # Run subprocess if DDP training, else train normally
        if world_size > 1 and "LOCAL_RANK" not in os.environ:
            # Argument checks
            if self.args.rect:
                LOGGER.warning("WARNING ⚠️ 'rect=True' is incompatible with Multi-GPU training, setting 'rect=False'")
                self.args.rect = False
            if self.args.batch == -1:
                LOGGER.warning(
                    "WARNING ⚠️ 'batch=-1' for AutoBatch is incompatible with Multi-GPU training, setting "
                    "default 'batch=16'"
                )
                self.args.batch = 16

            # Command
            cmd, file = generate_ddp_command(world_size, self)
            try:
                LOGGER.info(f'{colorstr("DDP:")} debug command {" ".join(cmd)}')
                subprocess.run(cmd, check=True)
            except Exception as e:
                raise e
            finally:
                ddp_cleanup(self, str(file))

        else:
            self._do_train(world_size)

    def _setup_scheduler(self):
        """Initialize training learning rate scheduler."""
        if self.args.cos_lr:
            self.lf = one_cycle(1, self.args.lrf, self.epochs)  # cosine 1->hyp['lrf']
        else:
            self.lf = lambda x: max(1 - x / self.epochs, 0) * (1.0 - self.args.lrf) + self.args.lrf  # linear
        self.scheduler = optim.lr_scheduler.LambdaLR(self.optimizer, lr_lambda=self.lf)

    def _setup_ddp(self, world_size):
        """Initializes and sets the DistributedDataParallel parameters for training."""
        torch.cuda.set_device(RANK)
        self.device = torch.device("cuda", RANK)
        # LOGGER.info(f'DDP info: RANK {RANK}, WORLD_SIZE {world_size}, DEVICE {self.device}')
        os.environ["NCCL_BLOCKING_WAIT"] = "1"  # set to enforce timeout
        dist.init_process_group(
            backend="nccl" if dist.is_nccl_available() else "gloo",
            timeout=timedelta(seconds=10800),  # 3 hours
            rank=RANK,
            world_size=world_size,
        )

    def _setup_train(self, world_size):
        """Builds dataloaders and optimizer on correct rank process."""

        # Model
        self.run_callbacks("on_pretrain_routine_start")
        ckpt = self.setup_model()
        self.model = self.model.to(self.device)
        self.set_model_attributes()

        # Freeze layers
        freeze_list = (
            self.args.freeze
            if isinstance(self.args.freeze, list)
            else range(self.args.freeze)
            if isinstance(self.args.freeze, int)
            else []
        )
        always_freeze_names = [".dfl"]  # always freeze these layers
        freeze_layer_names = [f"model.{x}." for x in freeze_list] + always_freeze_names
        for k, v in self.model.named_parameters():
            # v.register_hook(lambda x: torch.nan_to_num(x))  # NaN to 0 (commented for erratic training results)
            if any(x in k for x in freeze_layer_names):
                LOGGER.info(f"Freezing layer '{k}'")
                v.requires_grad = False
            elif not v.requires_grad and v.dtype.is_floating_point:  # only floating point Tensor can require gradients
                LOGGER.info(
                    f"WARNING ⚠️ setting 'requires_grad=True' for frozen layer '{k}'. "
                    "See ultralytics.engine.trainer for customization of frozen layers."
                )
                v.requires_grad = True

        # Check AMP
        self.amp = torch.tensor(self.args.amp).to(self.device)  # True or False
        if self.amp and RANK in (-1, 0):  # Single-GPU and DDP
            callbacks_backup = callbacks.default_callbacks.copy()  # backup callbacks as check_amp() resets them
            self.amp = torch.tensor(check_amp(self.model), device=self.device)
            callbacks.default_callbacks = callbacks_backup  # restore callbacks
        if RANK > -1 and world_size > 1:  # DDP
            dist.broadcast(self.amp, src=0)  # broadcast the tensor from rank 0 to all other ranks (returns None)
        self.amp = bool(self.amp)  # as boolean
        self.scaler = torch.cuda.amp.GradScaler(enabled=self.amp)
        if world_size > 1:
            self.model = nn.parallel.DistributedDataParallel(self.model, device_ids=[RANK])

        # Check imgsz
        gs = max(int(self.model.stride.max() if hasattr(self.model, "stride") else 32), 32)  # grid size (max stride)
        self.args.imgsz = check_imgsz(self.args.imgsz, stride=gs, floor=gs, max_dim=1)
        self.stride = gs  # for multiscale training

        # Batch size
        if self.batch_size == -1 and RANK == -1:  # single-GPU only, estimate best batch size
            self.args.batch = self.batch_size = check_train_batch_size(self.model, self.args.imgsz, self.amp)

        # Dataloaders
        batch_size = self.batch_size // max(world_size, 1)
        self.train_loader = self.get_dataloader(self.trainset, batch_size=batch_size, rank=RANK, mode="train")
        if RANK in (-1, 0):
            # Note: When training DOTA dataset, double batch size could get OOM on images with >2000 objects.
            self.test_loader = self.get_dataloader(
                self.testset, batch_size=batch_size if self.args.task == "obb" else batch_size * 2, rank=-1, mode="val"
            )
            self.validator = self.get_validator()
            metric_keys = self.validator.metrics.keys + self.label_loss_items(prefix="val")
            self.metrics = dict(zip(metric_keys, [0] * len(metric_keys)))
            self.ema = ModelEMA(self.model)
            if self.args.plots:
                self.plot_training_labels()

        # Optimizer
        self.accumulate = max(round(self.args.nbs / self.batch_size), 1)  # accumulate loss before optimizing
        weight_decay = self.args.weight_decay * self.batch_size * self.accumulate / self.args.nbs  # scale weight_decay
        iterations = math.ceil(len(self.train_loader.dataset) / max(self.batch_size, self.args.nbs)) * self.epochs
        self.optimizer = self.build_optimizer(
            model=self.model,
            name=self.args.optimizer,
            lr=self.args.lr0,
            momentum=self.args.momentum,
            decay=weight_decay,
            iterations=iterations,
        )
        # Scheduler
        self._setup_scheduler()
        self.stopper, self.stop = EarlyStopping(patience=self.args.patience), False
        self.resume_training(ckpt)
        self.scheduler.last_epoch = self.start_epoch - 1  # do not move
        self.run_callbacks("on_pretrain_routine_end")

    def _do_train(self, world_size=1):
        """Train completed, evaluate and plot if specified by arguments."""
        if world_size > 1:
            self._setup_ddp(world_size)
        self._setup_train(world_size)

        nb = len(self.train_loader)  # number of batches
        nw = max(round(self.args.warmup_epochs * nb), 100) if self.args.warmup_epochs > 0 else -1  # warmup iterations
        last_opt_step = -1
        self.epoch_time = None
        self.epoch_time_start = time.time()
        self.train_time_start = time.time()
        self.run_callbacks("on_train_start")
        LOGGER.info(
            f'Image sizes {self.args.imgsz} train, {self.args.imgsz} val\n'
            f'Using {self.train_loader.num_workers * (world_size or 1)} dataloader workers\n'
            f"Logging results to {colorstr('bold', self.save_dir)}\n"
            f'Starting training for ' + (f"{self.args.time} hours..." if self.args.time else f"{self.epochs} epochs...")
        )
        if self.args.close_mosaic:
            base_idx = (self.epochs - self.args.close_mosaic) * nb
            self.plot_idx.extend([base_idx, base_idx + 1, base_idx + 2])
        epoch = self.start_epoch
        while True:
            self.epoch = epoch
            self.run_callbacks("on_train_epoch_start")
            self.model.train()
            if RANK != -1:
                self.train_loader.sampler.set_epoch(epoch)
            pbar = enumerate(self.train_loader)
            # Update dataloader attributes (optional)
            if epoch == (self.epochs - self.args.close_mosaic):
                self._close_dataloader_mosaic()
                self.train_loader.reset()

            if RANK in (-1, 0):
                LOGGER.info(self.progress_string())
                pbar = TQDM(enumerate(self.train_loader), total=nb)
            self.tloss = None
            self.optimizer.zero_grad()
            for i, batch in pbar:
                self.run_callbacks("on_train_batch_start")
                # Warmup
                ni = i + nb * epoch
                if ni <= nw:
                    xi = [0, nw]  # x interp
                    self.accumulate = max(1, int(np.interp(ni, xi, [1, self.args.nbs / self.batch_size]).round()))
                    for j, x in enumerate(self.optimizer.param_groups):
                        # Bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                        x["lr"] = np.interp(
                            ni, xi, [self.args.warmup_bias_lr if j == 0 else 0.0, x["initial_lr"] * self.lf(epoch)]
                        )
                        if "momentum" in x:
                            x["momentum"] = np.interp(ni, xi, [self.args.warmup_momentum, self.args.momentum])

                # Forward
                with torch.cuda.amp.autocast(self.amp):
                    batch = self.preprocess_batch(batch)
                    self.loss, self.loss_items = self.model(batch)
                    if RANK != -1:
                        self.loss *= world_size
                    self.tloss = (
                        (self.tloss * i + self.loss_items) / (i + 1) if self.tloss is not None else self.loss_items
                    )

                # Backward
                self.scaler.scale(self.loss).backward()

                # Optimize - https://pytorch.org/docs/master/notes/amp_examples.html
                if ni - last_opt_step >= self.accumulate:
                    self.optimizer_step()
                    last_opt_step = ni

                    # Timed stopping
                    if self.args.time:
                        self.stop = (time.time() - self.train_time_start) > (self.args.time * 3600)
                        if RANK != -1:  # if DDP training
                            broadcast_list = [self.stop if RANK == 0 else None]
                            dist.broadcast_object_list(broadcast_list, 0)  # broadcast 'stop' to all ranks
                            self.stop = broadcast_list[0]
                        if self.stop:  # training time exceeded
                            break

                # Log
                mem = f"{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G"  # (GB)
                loss_len = self.tloss.shape[0] if len(self.tloss.shape) else 1
                losses = self.tloss if loss_len > 1 else torch.unsqueeze(self.tloss, 0)
                if RANK in (-1, 0):
                    pbar.set_description(
                        ("%11s" * 2 + "%11.4g" * (2 + loss_len))
                        % (f"{epoch + 1}/{self.epochs}", mem, *losses, batch["cls"].shape[0], batch["img"].shape[-1])
                    )
                    self.run_callbacks("on_batch_end")
                    if self.args.plots and ni in self.plot_idx:
                        self.plot_training_samples(batch, ni)

                self.run_callbacks("on_train_batch_end")

            self.lr = {f"lr/pg{ir}": x["lr"] for ir, x in enumerate(self.optimizer.param_groups)}  # for loggers
            self.run_callbacks("on_train_epoch_end")
            if RANK in (-1, 0):
                final_epoch = epoch + 1 == self.epochs
                self.ema.update_attr(self.model, include=["yaml", "nc", "args", "names", "stride", "class_weights"])

                # Validation
                if (self.args.val and (((epoch+1) % self.args.val_period == 0) or (self.epochs - epoch) <= 10)) \
                    or final_epoch or self.stopper.possible_stop or self.stop:
                    self.metrics, self.fitness = self.validate()
                self.save_metrics(metrics={**self.label_loss_items(self.tloss), **self.metrics, **self.lr})
                self.stop |= self.stopper(epoch + 1, self.fitness) or final_epoch
                if self.args.time:
                    self.stop |= (time.time() - self.train_time_start) > (self.args.time * 3600)

                # Save model
                if self.args.save or final_epoch:
                    self.save_model()
                    self.run_callbacks("on_model_save")

            # Scheduler
            t = time.time()
            self.epoch_time = t - self.epoch_time_start
            self.epoch_time_start = t
            with warnings.catch_warnings():
                warnings.simplefilter("ignore")  # suppress 'Detected lr_scheduler.step() before optimizer.step()'
                if self.args.time:
                    mean_epoch_time = (t - self.train_time_start) / (epoch - self.start_epoch + 1)
                    self.epochs = self.args.epochs = math.ceil(self.args.time * 3600 / mean_epoch_time)
                    self._setup_scheduler()
                    self.scheduler.last_epoch = self.epoch  # do not move
                    self.stop |= epoch >= self.epochs  # stop if exceeded epochs
                self.scheduler.step()
            self.run_callbacks("on_fit_epoch_end")
            torch.cuda.empty_cache()  # clear GPU memory at end of epoch, may help reduce CUDA out of memory errors

            # Early Stopping
            if RANK != -1:  # if DDP training
                broadcast_list = [self.stop if RANK == 0 else None]
                dist.broadcast_object_list(broadcast_list, 0)  # broadcast 'stop' to all ranks
                self.stop = broadcast_list[0]
            if self.stop:
                break  # must break all DDP ranks
            epoch += 1

        if RANK in (-1, 0):
            # Do final val with best.pt
            LOGGER.info(
                f"\n{epoch - self.start_epoch + 1} epochs completed in "
                f"{(time.time() - self.train_time_start) / 3600:.3f} hours."
            )
            self.final_eval()
            if self.args.plots:
                self.plot_metrics()
            self.run_callbacks("on_train_end")
        torch.cuda.empty_cache()
        self.run_callbacks("teardown")

    def save_model(self):
        """Save model training checkpoints with additional metadata."""
        import pandas as pd  # scope for faster startup

        metrics = {**self.metrics, **{"fitness": self.fitness}}
        results = {k.strip(): v for k, v in pd.read_csv(self.csv).to_dict(orient="list").items()}
        ckpt = {
            "epoch": self.epoch,
            "best_fitness": self.best_fitness,
            "model": deepcopy(de_parallel(self.model)).half(),
            "ema": deepcopy(self.ema.ema).half(),
            "updates": self.ema.updates,
            "optimizer": self.optimizer.state_dict(),
            "train_args": vars(self.args),  # save as dict
            "train_metrics": metrics,
            "train_results": results,
            "date": datetime.now().isoformat(),
            "version": __version__,
            "license": "AGPL-3.0 (https://ultralytics.com/license)",
            "docs": "https://docs.ultralytics.com",
        }

        # Save last and best
        torch.save(ckpt, self.last)
        if self.best_fitness == self.fitness:
            torch.save(ckpt, self.best)
        if (self.save_period > 0) and (self.epoch > 0) and (self.epoch % self.save_period == 0):
            torch.save(ckpt, self.wdir / f"epoch{self.epoch}.pt")

    @staticmethod
    def get_dataset(data):
        """
        Get train, val path from data dict if it exists.

        Returns None if data format is not recognized.
        """
        return data["train"], data.get("val") or data.get("test")

    def setup_model(self):
        """Load/create/download model for any task."""
        if isinstance(self.model, torch.nn.Module):  # if model is loaded beforehand. No setup needed
            return

        model, weights = self.model, None
        ckpt = None
        if str(model).endswith(".pt"):
            weights, ckpt = attempt_load_one_weight(model)
            cfg = ckpt["model"].yaml
        else:
            cfg = model
        self.model = self.get_model(cfg=cfg, weights=weights, verbose=RANK == -1)  # calls Model(cfg, weights)
        return ckpt

    def optimizer_step(self):
        """Perform a single step of the training optimizer with gradient clipping and EMA update."""
        self.scaler.unscale_(self.optimizer)  # unscale gradients
        torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=10.0)  # clip gradients
        self.scaler.step(self.optimizer)
        self.scaler.update()
        self.optimizer.zero_grad()
        if self.ema:
            self.ema.update(self.model)

    def preprocess_batch(self, batch):
        """Allows custom preprocessing model inputs and ground truths depending on task type."""
        return batch

    def validate(self):
        """
        Runs validation on test set using self.validator.

        The returned dict is expected to contain "fitness" key.
        """
        metrics = self.validator(self)
        fitness = metrics.pop("fitness", -self.loss.detach().cpu().numpy())  # use loss as fitness measure if not found
        if not self.best_fitness or self.best_fitness < fitness:
            self.best_fitness = fitness
        return metrics, fitness

    def get_model(self, cfg=None, weights=None, verbose=True):
        """Get model and raise NotImplementedError for loading cfg files."""
        raise NotImplementedError("This task trainer doesn't support loading cfg files")

    def get_validator(self):
        """Returns a NotImplementedError when the get_validator function is called."""
        raise NotImplementedError("get_validator function not implemented in trainer")

    def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode="train"):
        """Returns dataloader derived from torch.data.Dataloader."""
        raise NotImplementedError("get_dataloader function not implemented in trainer")

    def build_dataset(self, img_path, mode="train", batch=None):
        """Build dataset."""
        raise NotImplementedError("build_dataset function not implemented in trainer")

    def label_loss_items(self, loss_items=None, prefix="train"):
        """
        Returns a loss dict with labelled training loss items tensor.

        Note:
            This is not needed for classification but necessary for segmentation & detection
        """
        return {"loss": loss_items} if loss_items is not None else ["loss"]

    def set_model_attributes(self):
        """To set or update model parameters before training."""
        self.model.names = self.data["names"]

    def build_targets(self, preds, targets):
        """Builds target tensors for training YOLO model."""
        pass

    def progress_string(self):
        """Returns a string describing training progress."""
        return ""

    # TODO: may need to put these following functions into callback
    def plot_training_samples(self, batch, ni):
        """Plots training samples during YOLO training."""
        pass

    def plot_training_labels(self):
        """Plots training labels for YOLO model."""
        pass

    def save_metrics(self, metrics):
        """Saves training metrics to a CSV file."""
        keys, vals = list(metrics.keys()), list(metrics.values())
        n = len(metrics) + 1  # number of cols
        s = "" if self.csv.exists() else (("%23s," * n % tuple(["epoch"] + keys)).rstrip(",") + "\n")  # header
        with open(self.csv, "a") as f:
            f.write(s + ("%23.5g," * n % tuple([self.epoch + 1] + vals)).rstrip(",") + "\n")

    def plot_metrics(self):
        """Plot and display metrics visually."""
        pass

    def on_plot(self, name, data=None):
        """Registers plots (e.g. to be consumed in callbacks)"""
        path = Path(name)
        self.plots[path] = {"data": data, "timestamp": time.time()}

    def final_eval(self):
        """Performs final evaluation and validation for object detection YOLO model."""
        for f in self.last, self.best:
            if f.exists():
                strip_optimizer(f)  # strip optimizers
                if f is self.best:
                    LOGGER.info(f"\nValidating {f}...")
                    self.validator.args.plots = self.args.plots
                    self.metrics = self.validator(model=f)
                    self.metrics.pop("fitness", None)
                    self.run_callbacks("on_fit_epoch_end")

    def check_resume(self, overrides):
        """Check if resume checkpoint exists and update arguments accordingly."""
        resume = self.args.resume
        if resume:
            try:
                exists = isinstance(resume, (str, Path)) and Path(resume).exists()
                last = Path(check_file(resume) if exists else get_latest_run())

                # Check that resume data YAML exists, otherwise strip to force re-download of dataset
                ckpt_args = attempt_load_weights(last).args
                if not Path(ckpt_args["data"]).exists():
                    ckpt_args["data"] = self.args.data

                resume = True
                self.args = get_cfg(ckpt_args)
                self.args.model = self.args.resume = str(last)  # reinstate model
                for k in "imgsz", "batch", "device":  # allow arg updates to reduce memory or update device on resume
                    if k in overrides:
                        setattr(self.args, k, overrides[k])

            except Exception as e:
                raise FileNotFoundError(
                    "Resume checkpoint not found. Please pass a valid checkpoint to resume from, "
                    "i.e. 'yolo train resume model=path/to/last.pt'"
                ) from e
        self.resume = resume

    def resume_training(self, ckpt):
        """Resume YOLO training from given epoch and best fitness."""
        if ckpt is None or not self.resume:
            return
        best_fitness = 0.0
        start_epoch = ckpt["epoch"] + 1
        if ckpt["optimizer"] is not None:
            self.optimizer.load_state_dict(ckpt["optimizer"])  # optimizer
            best_fitness = ckpt["best_fitness"]
        if self.ema and ckpt.get("ema"):
            self.ema.ema.load_state_dict(ckpt["ema"].float().state_dict())  # EMA
            self.ema.updates = ckpt["updates"]
        assert start_epoch > 0, (
            f"{self.args.model} training to {self.epochs} epochs is finished, nothing to resume.\n"
            f"Start a new training without resuming, i.e. 'yolo train model={self.args.model}'"
        )
        LOGGER.info(f"Resuming training {self.args.model} from epoch {start_epoch + 1} to {self.epochs} total epochs")
        if self.epochs < start_epoch:
            LOGGER.info(
                f"{self.model} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {self.epochs} more epochs."
            )
            self.epochs += ckpt["epoch"]  # finetune additional epochs
        self.best_fitness = best_fitness
        self.start_epoch = start_epoch
        if start_epoch > (self.epochs - self.args.close_mosaic):
            self._close_dataloader_mosaic()

    def _close_dataloader_mosaic(self):
        """Update dataloaders to stop using mosaic augmentation."""
        if hasattr(self.train_loader.dataset, "mosaic"):
            self.train_loader.dataset.mosaic = False
        if hasattr(self.train_loader.dataset, "close_mosaic"):
            LOGGER.info("Closing dataloader mosaic")
            self.train_loader.dataset.close_mosaic(hyp=self.args)

    def build_optimizer(self, model, name="auto", lr=0.001, momentum=0.9, decay=1e-5, iterations=1e5):
        """
        Constructs an optimizer for the given model, based on the specified optimizer name, learning rate, momentum,
        weight decay, and number of iterations.

        Args:
            model (torch.nn.Module): The model for which to build an optimizer.
            name (str, optional): The name of the optimizer to use. If 'auto', the optimizer is selected
                based on the number of iterations. Default: 'auto'.
            lr (float, optional): The learning rate for the optimizer. Default: 0.001.
            momentum (float, optional): The momentum factor for the optimizer. Default: 0.9.
            decay (float, optional): The weight decay for the optimizer. Default: 1e-5.
            iterations (float, optional): The number of iterations, which determines the optimizer if
                name is 'auto'. Default: 1e5.

        Returns:
            (torch.optim.Optimizer): The constructed optimizer.
        """

        g = [], [], []  # optimizer parameter groups
        bn = tuple(v for k, v in nn.__dict__.items() if "Norm" in k)  # normalization layers, i.e. BatchNorm2d()
        if name == "auto":
            LOGGER.info(
                f"{colorstr('optimizer:')} 'optimizer=auto' found, "
                f"ignoring 'lr0={self.args.lr0}' and 'momentum={self.args.momentum}' and "
                f"determining best 'optimizer', 'lr0' and 'momentum' automatically... "
            )
            nc = getattr(model, "nc", 10)  # number of classes
            lr_fit = round(0.002 * 5 / (4 + nc), 6)  # lr0 fit equation to 6 decimal places
            name, lr, momentum = ("SGD", 0.01, 0.9) if iterations > 10000 else ("AdamW", lr_fit, 0.9)
            self.args.warmup_bias_lr = 0.0  # no higher than 0.01 for Adam

        for module_name, module in model.named_modules():
            for param_name, param in module.named_parameters(recurse=False):
                fullname = f"{module_name}.{param_name}" if module_name else param_name
                if "bias" in fullname:  # bias (no decay)
                    g[2].append(param)
                elif isinstance(module, bn):  # weight (no decay)
                    g[1].append(param)
                else:  # weight (with decay)
                    g[0].append(param)

        if name in ("Adam", "Adamax", "AdamW", "NAdam", "RAdam"):
            optimizer = getattr(optim, name, optim.Adam)(g[2], lr=lr, betas=(momentum, 0.999), weight_decay=0.0)
        elif name == "RMSProp":
            optimizer = optim.RMSprop(g[2], lr=lr, momentum=momentum)
        elif name == "SGD":
            optimizer = optim.SGD(g[2], lr=lr, momentum=momentum, nesterov=True)
        else:
            raise NotImplementedError(
                f"Optimizer '{name}' not found in list of available optimizers "
                f"[Adam, AdamW, NAdam, RAdam, RMSProp, SGD, auto]."
                "To request support for addition optimizers please visit https://github.com/ultralytics/ultralytics."
            )

        optimizer.add_param_group({"params": g[0], "weight_decay": decay})  # add g0 with weight_decay
        optimizer.add_param_group({"params": g[1], "weight_decay": 0.0})  # add g1 (BatchNorm2d weights)
        LOGGER.info(
            f"{colorstr('optimizer:')} {type(optimizer).__name__}(lr={lr}, momentum={momentum}) with parameter groups "
            f'{len(g[1])} weight(decay=0.0), {len(g[0])} weight(decay={decay}), {len(g[2])} bias(decay=0.0)'
        )
        return optimizer