|
|
|
|
|
import contextlib |
|
import os |
|
import shutil |
|
import subprocess |
|
import sys |
|
from pathlib import Path |
|
from types import SimpleNamespace |
|
from typing import Dict, List, Union |
|
import re |
|
|
|
from ultralytics.utils import ( |
|
ASSETS, |
|
DEFAULT_CFG, |
|
DEFAULT_CFG_DICT, |
|
DEFAULT_CFG_PATH, |
|
LOGGER, |
|
RANK, |
|
ROOT, |
|
RUNS_DIR, |
|
SETTINGS, |
|
SETTINGS_YAML, |
|
TESTS_RUNNING, |
|
IterableSimpleNamespace, |
|
__version__, |
|
checks, |
|
colorstr, |
|
deprecation_warn, |
|
yaml_load, |
|
yaml_print, |
|
) |
|
|
|
|
|
MODES = {"train", "val", "predict", "export", "track", "benchmark"} |
|
TASKS = {"detect", "segment", "classify", "pose", "obb"} |
|
TASK2DATA = { |
|
"detect": "coco8.yaml", |
|
"segment": "coco8-seg.yaml", |
|
"classify": "imagenet10", |
|
"pose": "coco8-pose.yaml", |
|
"obb": "dota8.yaml", |
|
} |
|
TASK2MODEL = { |
|
"detect": "yolov8n.pt", |
|
"segment": "yolov8n-seg.pt", |
|
"classify": "yolov8n-cls.pt", |
|
"pose": "yolov8n-pose.pt", |
|
"obb": "yolov8n-obb.pt", |
|
} |
|
TASK2METRIC = { |
|
"detect": "metrics/mAP50-95(B)", |
|
"segment": "metrics/mAP50-95(M)", |
|
"classify": "metrics/accuracy_top1", |
|
"pose": "metrics/mAP50-95(P)", |
|
"obb": "metrics/mAP50-95(B)", |
|
} |
|
|
|
CLI_HELP_MSG = f""" |
|
Arguments received: {str(['yolo'] + sys.argv[1:])}. Ultralytics 'yolo' commands use the following syntax: |
|
|
|
yolo TASK MODE ARGS |
|
|
|
Where TASK (optional) is one of {TASKS} |
|
MODE (required) is one of {MODES} |
|
ARGS (optional) are any number of custom 'arg=value' pairs like 'imgsz=320' that override defaults. |
|
See all ARGS at https://docs.ultralytics.com/usage/cfg or with 'yolo cfg' |
|
|
|
1. Train a detection model for 10 epochs with an initial learning_rate of 0.01 |
|
yolo train data=coco128.yaml model=yolov8n.pt epochs=10 lr0=0.01 |
|
|
|
2. Predict a YouTube video using a pretrained segmentation model at image size 320: |
|
yolo predict model=yolov8n-seg.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320 |
|
|
|
3. Val a pretrained detection model at batch-size 1 and image size 640: |
|
yolo val model=yolov8n.pt data=coco128.yaml batch=1 imgsz=640 |
|
|
|
4. Export a YOLOv8n classification model to ONNX format at image size 224 by 128 (no TASK required) |
|
yolo export model=yolov8n-cls.pt format=onnx imgsz=224,128 |
|
|
|
6. Explore your datasets using semantic search and SQL with a simple GUI powered by Ultralytics Explorer API |
|
yolo explorer |
|
|
|
5. Run special commands: |
|
yolo help |
|
yolo checks |
|
yolo version |
|
yolo settings |
|
yolo copy-cfg |
|
yolo cfg |
|
|
|
Docs: https://docs.ultralytics.com |
|
Community: https://community.ultralytics.com |
|
GitHub: https://github.com/ultralytics/ultralytics |
|
""" |
|
|
|
|
|
CFG_FLOAT_KEYS = {"warmup_epochs", "box", "cls", "dfl", "degrees", "shear", "time"} |
|
CFG_FRACTION_KEYS = { |
|
"dropout", |
|
"iou", |
|
"lr0", |
|
"lrf", |
|
"momentum", |
|
"weight_decay", |
|
"warmup_momentum", |
|
"warmup_bias_lr", |
|
"label_smoothing", |
|
"hsv_h", |
|
"hsv_s", |
|
"hsv_v", |
|
"translate", |
|
"scale", |
|
"perspective", |
|
"flipud", |
|
"fliplr", |
|
"bgr", |
|
"mosaic", |
|
"mixup", |
|
"copy_paste", |
|
"conf", |
|
"iou", |
|
"fraction", |
|
} |
|
CFG_INT_KEYS = { |
|
"epochs", |
|
"patience", |
|
"batch", |
|
"workers", |
|
"seed", |
|
"close_mosaic", |
|
"mask_ratio", |
|
"max_det", |
|
"vid_stride", |
|
"line_width", |
|
"workspace", |
|
"nbs", |
|
"save_period", |
|
} |
|
CFG_BOOL_KEYS = { |
|
"save", |
|
"exist_ok", |
|
"verbose", |
|
"deterministic", |
|
"single_cls", |
|
"rect", |
|
"cos_lr", |
|
"overlap_mask", |
|
"val", |
|
"save_json", |
|
"save_hybrid", |
|
"half", |
|
"dnn", |
|
"plots", |
|
"show", |
|
"save_txt", |
|
"save_conf", |
|
"save_crop", |
|
"save_frames", |
|
"show_labels", |
|
"show_conf", |
|
"visualize", |
|
"augment", |
|
"agnostic_nms", |
|
"retina_masks", |
|
"show_boxes", |
|
"keras", |
|
"optimize", |
|
"int8", |
|
"dynamic", |
|
"simplify", |
|
"nms", |
|
"profile", |
|
"multi_scale", |
|
} |
|
|
|
|
|
def cfg2dict(cfg): |
|
""" |
|
Convert a configuration object to a dictionary, whether it is a file path, a string, or a SimpleNamespace object. |
|
|
|
Args: |
|
cfg (str | Path | dict | SimpleNamespace): Configuration object to be converted to a dictionary. |
|
|
|
Returns: |
|
cfg (dict): Configuration object in dictionary format. |
|
""" |
|
if isinstance(cfg, (str, Path)): |
|
cfg = yaml_load(cfg) |
|
elif isinstance(cfg, SimpleNamespace): |
|
cfg = vars(cfg) |
|
return cfg |
|
|
|
|
|
def get_cfg(cfg: Union[str, Path, Dict, SimpleNamespace] = DEFAULT_CFG_DICT, overrides: Dict = None): |
|
""" |
|
Load and merge configuration data from a file or dictionary. |
|
|
|
Args: |
|
cfg (str | Path | Dict | SimpleNamespace): Configuration data. |
|
overrides (str | Dict | optional): Overrides in the form of a file name or a dictionary. Default is None. |
|
|
|
Returns: |
|
(SimpleNamespace): Training arguments namespace. |
|
""" |
|
cfg = cfg2dict(cfg) |
|
|
|
|
|
if overrides: |
|
overrides = cfg2dict(overrides) |
|
if "save_dir" not in cfg: |
|
overrides.pop("save_dir", None) |
|
check_dict_alignment(cfg, overrides) |
|
cfg = {**cfg, **overrides} |
|
|
|
|
|
for k in "project", "name": |
|
if k in cfg and isinstance(cfg[k], (int, float)): |
|
cfg[k] = str(cfg[k]) |
|
if cfg.get("name") == "model": |
|
cfg["name"] = cfg.get("model", "").split(".")[0] |
|
LOGGER.warning(f"WARNING ⚠️ 'name=model' automatically updated to 'name={cfg['name']}'.") |
|
|
|
|
|
check_cfg(cfg) |
|
|
|
|
|
return IterableSimpleNamespace(**cfg) |
|
|
|
|
|
def check_cfg(cfg, hard=True): |
|
"""Check Ultralytics configuration argument types and values.""" |
|
for k, v in cfg.items(): |
|
if v is not None: |
|
if k in CFG_FLOAT_KEYS and not isinstance(v, (int, float)): |
|
if hard: |
|
raise TypeError( |
|
f"'{k}={v}' is of invalid type {type(v).__name__}. " |
|
f"Valid '{k}' types are int (i.e. '{k}=0') or float (i.e. '{k}=0.5')" |
|
) |
|
cfg[k] = float(v) |
|
elif k in CFG_FRACTION_KEYS: |
|
if not isinstance(v, (int, float)): |
|
if hard: |
|
raise TypeError( |
|
f"'{k}={v}' is of invalid type {type(v).__name__}. " |
|
f"Valid '{k}' types are int (i.e. '{k}=0') or float (i.e. '{k}=0.5')" |
|
) |
|
cfg[k] = v = float(v) |
|
if not (0.0 <= v <= 1.0): |
|
raise ValueError(f"'{k}={v}' is an invalid value. " f"Valid '{k}' values are between 0.0 and 1.0.") |
|
elif k in CFG_INT_KEYS and not isinstance(v, int): |
|
if hard: |
|
raise TypeError( |
|
f"'{k}={v}' is of invalid type {type(v).__name__}. " f"'{k}' must be an int (i.e. '{k}=8')" |
|
) |
|
cfg[k] = int(v) |
|
elif k in CFG_BOOL_KEYS and not isinstance(v, bool): |
|
if hard: |
|
raise TypeError( |
|
f"'{k}={v}' is of invalid type {type(v).__name__}. " |
|
f"'{k}' must be a bool (i.e. '{k}=True' or '{k}=False')" |
|
) |
|
cfg[k] = bool(v) |
|
|
|
|
|
def get_save_dir(args, name=None): |
|
"""Return save_dir as created from train/val/predict arguments.""" |
|
|
|
if getattr(args, "save_dir", None): |
|
save_dir = args.save_dir |
|
else: |
|
from ultralytics.utils.files import increment_path |
|
|
|
project = args.project or (ROOT.parent / "tests/tmp/runs" if TESTS_RUNNING else RUNS_DIR) / args.task |
|
name = name or args.name or f"{args.mode}" |
|
save_dir = increment_path(Path(project) / name, exist_ok=args.exist_ok if RANK in (-1, 0) else True) |
|
|
|
return Path(save_dir) |
|
|
|
|
|
def _handle_deprecation(custom): |
|
"""Hardcoded function to handle deprecated config keys.""" |
|
|
|
for key in custom.copy().keys(): |
|
if key == "boxes": |
|
deprecation_warn(key, "show_boxes") |
|
custom["show_boxes"] = custom.pop("boxes") |
|
if key == "hide_labels": |
|
deprecation_warn(key, "show_labels") |
|
custom["show_labels"] = custom.pop("hide_labels") == "False" |
|
if key == "hide_conf": |
|
deprecation_warn(key, "show_conf") |
|
custom["show_conf"] = custom.pop("hide_conf") == "False" |
|
if key == "line_thickness": |
|
deprecation_warn(key, "line_width") |
|
custom["line_width"] = custom.pop("line_thickness") |
|
|
|
return custom |
|
|
|
|
|
def check_dict_alignment(base: Dict, custom: Dict, e=None): |
|
""" |
|
This function checks for any mismatched keys between a custom configuration list and a base configuration list. If |
|
any mismatched keys are found, the function prints out similar keys from the base list and exits the program. |
|
|
|
Args: |
|
custom (dict): a dictionary of custom configuration options |
|
base (dict): a dictionary of base configuration options |
|
e (Error, optional): An optional error that is passed by the calling function. |
|
""" |
|
custom = _handle_deprecation(custom) |
|
base_keys, custom_keys = (set(x.keys()) for x in (base, custom)) |
|
mismatched = [k for k in custom_keys if k not in base_keys] |
|
if mismatched: |
|
from difflib import get_close_matches |
|
|
|
string = "" |
|
for x in mismatched: |
|
matches = get_close_matches(x, base_keys) |
|
matches = [f"{k}={base[k]}" if base.get(k) is not None else k for k in matches] |
|
match_str = f"Similar arguments are i.e. {matches}." if matches else "" |
|
string += f"'{colorstr('red', 'bold', x)}' is not a valid YOLO argument. {match_str}\n" |
|
raise SyntaxError(string + CLI_HELP_MSG) from e |
|
|
|
|
|
def merge_equals_args(args: List[str]) -> List[str]: |
|
""" |
|
Merges arguments around isolated '=' args in a list of strings. The function considers cases where the first |
|
argument ends with '=' or the second starts with '=', as well as when the middle one is an equals sign. |
|
|
|
Args: |
|
args (List[str]): A list of strings where each element is an argument. |
|
|
|
Returns: |
|
(List[str]): A list of strings where the arguments around isolated '=' are merged. |
|
""" |
|
new_args = [] |
|
for i, arg in enumerate(args): |
|
if arg == "=" and 0 < i < len(args) - 1: |
|
new_args[-1] += f"={args[i + 1]}" |
|
del args[i + 1] |
|
elif arg.endswith("=") and i < len(args) - 1 and "=" not in args[i + 1]: |
|
new_args.append(f"{arg}{args[i + 1]}") |
|
del args[i + 1] |
|
elif arg.startswith("=") and i > 0: |
|
new_args[-1] += arg |
|
else: |
|
new_args.append(arg) |
|
return new_args |
|
|
|
|
|
def handle_yolo_hub(args: List[str]) -> None: |
|
""" |
|
Handle Ultralytics HUB command-line interface (CLI) commands. |
|
|
|
This function processes Ultralytics HUB CLI commands such as login and logout. |
|
It should be called when executing a script with arguments related to HUB authentication. |
|
|
|
Args: |
|
args (List[str]): A list of command line arguments |
|
|
|
Example: |
|
```bash |
|
python my_script.py hub login your_api_key |
|
``` |
|
""" |
|
from ultralytics import hub |
|
|
|
if args[0] == "login": |
|
key = args[1] if len(args) > 1 else "" |
|
|
|
hub.login(key) |
|
elif args[0] == "logout": |
|
|
|
hub.logout() |
|
|
|
|
|
def handle_yolo_settings(args: List[str]) -> None: |
|
""" |
|
Handle YOLO settings command-line interface (CLI) commands. |
|
|
|
This function processes YOLO settings CLI commands such as reset. |
|
It should be called when executing a script with arguments related to YOLO settings management. |
|
|
|
Args: |
|
args (List[str]): A list of command line arguments for YOLO settings management. |
|
|
|
Example: |
|
```bash |
|
python my_script.py yolo settings reset |
|
``` |
|
""" |
|
url = "https://docs.ultralytics.com/quickstart/#ultralytics-settings" |
|
try: |
|
if any(args): |
|
if args[0] == "reset": |
|
SETTINGS_YAML.unlink() |
|
SETTINGS.reset() |
|
LOGGER.info("Settings reset successfully") |
|
else: |
|
new = dict(parse_key_value_pair(a) for a in args) |
|
check_dict_alignment(SETTINGS, new) |
|
SETTINGS.update(new) |
|
|
|
LOGGER.info(f"💡 Learn about settings at {url}") |
|
yaml_print(SETTINGS_YAML) |
|
except Exception as e: |
|
LOGGER.warning(f"WARNING ⚠️ settings error: '{e}'. Please see {url} for help.") |
|
|
|
|
|
def handle_explorer(): |
|
"""Open the Ultralytics Explorer GUI.""" |
|
checks.check_requirements("streamlit") |
|
LOGGER.info("💡 Loading Explorer dashboard...") |
|
subprocess.run(["streamlit", "run", ROOT / "data/explorer/gui/dash.py", "--server.maxMessageSize", "2048"]) |
|
|
|
|
|
def parse_key_value_pair(pair): |
|
"""Parse one 'key=value' pair and return key and value.""" |
|
k, v = pair.split("=", 1) |
|
k, v = k.strip(), v.strip() |
|
assert v, f"missing '{k}' value" |
|
return k, smart_value(v) |
|
|
|
|
|
def smart_value(v): |
|
"""Convert a string to an underlying type such as int, float, bool, etc.""" |
|
v_lower = v.lower() |
|
if v_lower == "none": |
|
return None |
|
elif v_lower == "true": |
|
return True |
|
elif v_lower == "false": |
|
return False |
|
else: |
|
with contextlib.suppress(Exception): |
|
return eval(v) |
|
return v |
|
|
|
|
|
def entrypoint(debug=""): |
|
""" |
|
This function is the ultralytics package entrypoint, it's responsible for parsing the command line arguments passed |
|
to the package. |
|
|
|
This function allows for: |
|
- passing mandatory YOLO args as a list of strings |
|
- specifying the task to be performed, either 'detect', 'segment' or 'classify' |
|
- specifying the mode, either 'train', 'val', 'test', or 'predict' |
|
- running special modes like 'checks' |
|
- passing overrides to the package's configuration |
|
|
|
It uses the package's default cfg and initializes it using the passed overrides. |
|
Then it calls the CLI function with the composed cfg |
|
""" |
|
args = (debug.split(" ") if debug else sys.argv)[1:] |
|
if not args: |
|
LOGGER.info(CLI_HELP_MSG) |
|
return |
|
|
|
special = { |
|
"help": lambda: LOGGER.info(CLI_HELP_MSG), |
|
"checks": checks.collect_system_info, |
|
"version": lambda: LOGGER.info(__version__), |
|
"settings": lambda: handle_yolo_settings(args[1:]), |
|
"cfg": lambda: yaml_print(DEFAULT_CFG_PATH), |
|
"hub": lambda: handle_yolo_hub(args[1:]), |
|
"login": lambda: handle_yolo_hub(args), |
|
"copy-cfg": copy_default_cfg, |
|
"explorer": lambda: handle_explorer(), |
|
} |
|
full_args_dict = {**DEFAULT_CFG_DICT, **{k: None for k in TASKS}, **{k: None for k in MODES}, **special} |
|
|
|
|
|
special.update({k[0]: v for k, v in special.items()}) |
|
special.update({k[:-1]: v for k, v in special.items() if len(k) > 1 and k.endswith("s")}) |
|
special = {**special, **{f"-{k}": v for k, v in special.items()}, **{f"--{k}": v for k, v in special.items()}} |
|
|
|
overrides = {} |
|
for a in merge_equals_args(args): |
|
if a.startswith("--"): |
|
LOGGER.warning(f"WARNING ⚠️ argument '{a}' does not require leading dashes '--', updating to '{a[2:]}'.") |
|
a = a[2:] |
|
if a.endswith(","): |
|
LOGGER.warning(f"WARNING ⚠️ argument '{a}' does not require trailing comma ',', updating to '{a[:-1]}'.") |
|
a = a[:-1] |
|
if "=" in a: |
|
try: |
|
k, v = parse_key_value_pair(a) |
|
if k == "cfg" and v is not None: |
|
LOGGER.info(f"Overriding {DEFAULT_CFG_PATH} with {v}") |
|
overrides = {k: val for k, val in yaml_load(checks.check_yaml(v)).items() if k != "cfg"} |
|
else: |
|
overrides[k] = v |
|
except (NameError, SyntaxError, ValueError, AssertionError) as e: |
|
check_dict_alignment(full_args_dict, {a: ""}, e) |
|
|
|
elif a in TASKS: |
|
overrides["task"] = a |
|
elif a in MODES: |
|
overrides["mode"] = a |
|
elif a.lower() in special: |
|
special[a.lower()]() |
|
return |
|
elif a in DEFAULT_CFG_DICT and isinstance(DEFAULT_CFG_DICT[a], bool): |
|
overrides[a] = True |
|
elif a in DEFAULT_CFG_DICT: |
|
raise SyntaxError( |
|
f"'{colorstr('red', 'bold', a)}' is a valid YOLO argument but is missing an '=' sign " |
|
f"to set its value, i.e. try '{a}={DEFAULT_CFG_DICT[a]}'\n{CLI_HELP_MSG}" |
|
) |
|
else: |
|
check_dict_alignment(full_args_dict, {a: ""}) |
|
|
|
|
|
check_dict_alignment(full_args_dict, overrides) |
|
|
|
|
|
mode = overrides.get("mode") |
|
if mode is None: |
|
mode = DEFAULT_CFG.mode or "predict" |
|
LOGGER.warning(f"WARNING ⚠️ 'mode' argument is missing. Valid modes are {MODES}. Using default 'mode={mode}'.") |
|
elif mode not in MODES: |
|
raise ValueError(f"Invalid 'mode={mode}'. Valid modes are {MODES}.\n{CLI_HELP_MSG}") |
|
|
|
|
|
task = overrides.pop("task", None) |
|
if task: |
|
if task not in TASKS: |
|
raise ValueError(f"Invalid 'task={task}'. Valid tasks are {TASKS}.\n{CLI_HELP_MSG}") |
|
if "model" not in overrides: |
|
overrides["model"] = TASK2MODEL[task] |
|
|
|
|
|
model = overrides.pop("model", DEFAULT_CFG.model) |
|
if model is None: |
|
model = "yolov8n.pt" |
|
LOGGER.warning(f"WARNING ⚠️ 'model' argument is missing. Using default 'model={model}'.") |
|
overrides["model"] = model |
|
|
|
stem = model.lower() |
|
if "rtdetr" in stem: |
|
from ultralytics import RTDETR |
|
|
|
model = RTDETR(model) |
|
elif "fastsam" in stem: |
|
from ultralytics import FastSAM |
|
|
|
model = FastSAM(model) |
|
elif "sam" in stem: |
|
from ultralytics import SAM |
|
|
|
model = SAM(model) |
|
elif re.search("v3|v5|v6|v8|v9", stem): |
|
from ultralytics import YOLO |
|
|
|
model = YOLO(model, task=task) |
|
else: |
|
from ultralytics import YOLOv10 |
|
|
|
|
|
split_path = model.split('/') |
|
if len(split_path) == 2 and (not os.path.exists(model)): |
|
model = YOLOv10.from_pretrained(model) |
|
else: |
|
model = YOLOv10(model) |
|
if isinstance(overrides.get("pretrained"), str): |
|
model.load(overrides["pretrained"]) |
|
|
|
|
|
if task != model.task: |
|
if task: |
|
LOGGER.warning( |
|
f"WARNING ⚠️ conflicting 'task={task}' passed with 'task={model.task}' model. " |
|
f"Ignoring 'task={task}' and updating to 'task={model.task}' to match model." |
|
) |
|
task = model.task |
|
|
|
|
|
if mode in ("predict", "track") and "source" not in overrides: |
|
overrides["source"] = DEFAULT_CFG.source or ASSETS |
|
LOGGER.warning(f"WARNING ⚠️ 'source' argument is missing. Using default 'source={overrides['source']}'.") |
|
elif mode in ("train", "val"): |
|
if "data" not in overrides and "resume" not in overrides: |
|
overrides["data"] = DEFAULT_CFG.data or TASK2DATA.get(task or DEFAULT_CFG.task, DEFAULT_CFG.data) |
|
LOGGER.warning(f"WARNING ⚠️ 'data' argument is missing. Using default 'data={overrides['data']}'.") |
|
elif mode == "export": |
|
if "format" not in overrides: |
|
overrides["format"] = DEFAULT_CFG.format or "torchscript" |
|
LOGGER.warning(f"WARNING ⚠️ 'format' argument is missing. Using default 'format={overrides['format']}'.") |
|
|
|
|
|
getattr(model, mode)(**overrides) |
|
|
|
|
|
LOGGER.info(f"💡 Learn more at https://docs.ultralytics.com/modes/{mode}") |
|
|
|
|
|
|
|
def copy_default_cfg(): |
|
"""Copy and create a new default configuration file with '_copy' appended to its name.""" |
|
new_file = Path.cwd() / DEFAULT_CFG_PATH.name.replace(".yaml", "_copy.yaml") |
|
shutil.copy2(DEFAULT_CFG_PATH, new_file) |
|
LOGGER.info( |
|
f"{DEFAULT_CFG_PATH} copied to {new_file}\n" |
|
f"Example YOLO command with this new custom cfg:\n yolo cfg='{new_file}' imgsz=320 batch=8" |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
entrypoint(debug="") |
|
|