|
|
|
|
|
import itertools |
|
from glob import glob |
|
from math import ceil |
|
from pathlib import Path |
|
|
|
import cv2 |
|
import numpy as np |
|
from PIL import Image |
|
from tqdm import tqdm |
|
|
|
from ultralytics.data.utils import exif_size, img2label_paths |
|
from ultralytics.utils.checks import check_requirements |
|
|
|
check_requirements("shapely") |
|
from shapely.geometry import Polygon |
|
|
|
|
|
def bbox_iof(polygon1, bbox2, eps=1e-6): |
|
""" |
|
Calculate iofs between bbox1 and bbox2. |
|
|
|
Args: |
|
polygon1 (np.ndarray): Polygon coordinates, (n, 8). |
|
bbox2 (np.ndarray): Bounding boxes, (n ,4). |
|
""" |
|
polygon1 = polygon1.reshape(-1, 4, 2) |
|
lt_point = np.min(polygon1, axis=-2) |
|
rb_point = np.max(polygon1, axis=-2) |
|
bbox1 = np.concatenate([lt_point, rb_point], axis=-1) |
|
|
|
lt = np.maximum(bbox1[:, None, :2], bbox2[..., :2]) |
|
rb = np.minimum(bbox1[:, None, 2:], bbox2[..., 2:]) |
|
wh = np.clip(rb - lt, 0, np.inf) |
|
h_overlaps = wh[..., 0] * wh[..., 1] |
|
|
|
l, t, r, b = (bbox2[..., i] for i in range(4)) |
|
polygon2 = np.stack([l, t, r, t, r, b, l, b], axis=-1).reshape(-1, 4, 2) |
|
|
|
sg_polys1 = [Polygon(p) for p in polygon1] |
|
sg_polys2 = [Polygon(p) for p in polygon2] |
|
overlaps = np.zeros(h_overlaps.shape) |
|
for p in zip(*np.nonzero(h_overlaps)): |
|
overlaps[p] = sg_polys1[p[0]].intersection(sg_polys2[p[-1]]).area |
|
unions = np.array([p.area for p in sg_polys1], dtype=np.float32) |
|
unions = unions[..., None] |
|
|
|
unions = np.clip(unions, eps, np.inf) |
|
outputs = overlaps / unions |
|
if outputs.ndim == 1: |
|
outputs = outputs[..., None] |
|
return outputs |
|
|
|
|
|
def load_yolo_dota(data_root, split="train"): |
|
""" |
|
Load DOTA dataset. |
|
|
|
Args: |
|
data_root (str): Data root. |
|
split (str): The split data set, could be train or val. |
|
|
|
Notes: |
|
The directory structure assumed for the DOTA dataset: |
|
- data_root |
|
- images |
|
- train |
|
- val |
|
- labels |
|
- train |
|
- val |
|
""" |
|
assert split in ["train", "val"] |
|
im_dir = Path(data_root) / "images" / split |
|
assert im_dir.exists(), f"Can't find {im_dir}, please check your data root." |
|
im_files = glob(str(Path(data_root) / "images" / split / "*")) |
|
lb_files = img2label_paths(im_files) |
|
annos = [] |
|
for im_file, lb_file in zip(im_files, lb_files): |
|
w, h = exif_size(Image.open(im_file)) |
|
with open(lb_file) as f: |
|
lb = [x.split() for x in f.read().strip().splitlines() if len(x)] |
|
lb = np.array(lb, dtype=np.float32) |
|
annos.append(dict(ori_size=(h, w), label=lb, filepath=im_file)) |
|
return annos |
|
|
|
|
|
def get_windows(im_size, crop_sizes=[1024], gaps=[200], im_rate_thr=0.6, eps=0.01): |
|
""" |
|
Get the coordinates of windows. |
|
|
|
Args: |
|
im_size (tuple): Original image size, (h, w). |
|
crop_sizes (List(int)): Crop size of windows. |
|
gaps (List(int)): Gap between crops. |
|
im_rate_thr (float): Threshold of windows areas divided by image ares. |
|
""" |
|
h, w = im_size |
|
windows = [] |
|
for crop_size, gap in zip(crop_sizes, gaps): |
|
assert crop_size > gap, f"invalid crop_size gap pair [{crop_size} {gap}]" |
|
step = crop_size - gap |
|
|
|
xn = 1 if w <= crop_size else ceil((w - crop_size) / step + 1) |
|
xs = [step * i for i in range(xn)] |
|
if len(xs) > 1 and xs[-1] + crop_size > w: |
|
xs[-1] = w - crop_size |
|
|
|
yn = 1 if h <= crop_size else ceil((h - crop_size) / step + 1) |
|
ys = [step * i for i in range(yn)] |
|
if len(ys) > 1 and ys[-1] + crop_size > h: |
|
ys[-1] = h - crop_size |
|
|
|
start = np.array(list(itertools.product(xs, ys)), dtype=np.int64) |
|
stop = start + crop_size |
|
windows.append(np.concatenate([start, stop], axis=1)) |
|
windows = np.concatenate(windows, axis=0) |
|
|
|
im_in_wins = windows.copy() |
|
im_in_wins[:, 0::2] = np.clip(im_in_wins[:, 0::2], 0, w) |
|
im_in_wins[:, 1::2] = np.clip(im_in_wins[:, 1::2], 0, h) |
|
im_areas = (im_in_wins[:, 2] - im_in_wins[:, 0]) * (im_in_wins[:, 3] - im_in_wins[:, 1]) |
|
win_areas = (windows[:, 2] - windows[:, 0]) * (windows[:, 3] - windows[:, 1]) |
|
im_rates = im_areas / win_areas |
|
if not (im_rates > im_rate_thr).any(): |
|
max_rate = im_rates.max() |
|
im_rates[abs(im_rates - max_rate) < eps] = 1 |
|
return windows[im_rates > im_rate_thr] |
|
|
|
|
|
def get_window_obj(anno, windows, iof_thr=0.7): |
|
"""Get objects for each window.""" |
|
h, w = anno["ori_size"] |
|
label = anno["label"] |
|
if len(label): |
|
label[:, 1::2] *= w |
|
label[:, 2::2] *= h |
|
iofs = bbox_iof(label[:, 1:], windows) |
|
|
|
return [(label[iofs[:, i] >= iof_thr]) for i in range(len(windows))] |
|
else: |
|
return [np.zeros((0, 9), dtype=np.float32) for _ in range(len(windows))] |
|
|
|
|
|
def crop_and_save(anno, windows, window_objs, im_dir, lb_dir): |
|
""" |
|
Crop images and save new labels. |
|
|
|
Args: |
|
anno (dict): Annotation dict, including `filepath`, `label`, `ori_size` as its keys. |
|
windows (list): A list of windows coordinates. |
|
window_objs (list): A list of labels inside each window. |
|
im_dir (str): The output directory path of images. |
|
lb_dir (str): The output directory path of labels. |
|
|
|
Notes: |
|
The directory structure assumed for the DOTA dataset: |
|
- data_root |
|
- images |
|
- train |
|
- val |
|
- labels |
|
- train |
|
- val |
|
""" |
|
im = cv2.imread(anno["filepath"]) |
|
name = Path(anno["filepath"]).stem |
|
for i, window in enumerate(windows): |
|
x_start, y_start, x_stop, y_stop = window.tolist() |
|
new_name = f"{name}__{x_stop - x_start}__{x_start}___{y_start}" |
|
patch_im = im[y_start:y_stop, x_start:x_stop] |
|
ph, pw = patch_im.shape[:2] |
|
|
|
cv2.imwrite(str(Path(im_dir) / f"{new_name}.jpg"), patch_im) |
|
label = window_objs[i] |
|
if len(label) == 0: |
|
continue |
|
label[:, 1::2] -= x_start |
|
label[:, 2::2] -= y_start |
|
label[:, 1::2] /= pw |
|
label[:, 2::2] /= ph |
|
|
|
with open(Path(lb_dir) / f"{new_name}.txt", "w") as f: |
|
for lb in label: |
|
formatted_coords = ["{:.6g}".format(coord) for coord in lb[1:]] |
|
f.write(f"{int(lb[0])} {' '.join(formatted_coords)}\n") |
|
|
|
|
|
def split_images_and_labels(data_root, save_dir, split="train", crop_sizes=[1024], gaps=[200]): |
|
""" |
|
Split both images and labels. |
|
|
|
Notes: |
|
The directory structure assumed for the DOTA dataset: |
|
- data_root |
|
- images |
|
- split |
|
- labels |
|
- split |
|
and the output directory structure is: |
|
- save_dir |
|
- images |
|
- split |
|
- labels |
|
- split |
|
""" |
|
im_dir = Path(save_dir) / "images" / split |
|
im_dir.mkdir(parents=True, exist_ok=True) |
|
lb_dir = Path(save_dir) / "labels" / split |
|
lb_dir.mkdir(parents=True, exist_ok=True) |
|
|
|
annos = load_yolo_dota(data_root, split=split) |
|
for anno in tqdm(annos, total=len(annos), desc=split): |
|
windows = get_windows(anno["ori_size"], crop_sizes, gaps) |
|
window_objs = get_window_obj(anno, windows) |
|
crop_and_save(anno, windows, window_objs, str(im_dir), str(lb_dir)) |
|
|
|
|
|
def split_trainval(data_root, save_dir, crop_size=1024, gap=200, rates=[1.0]): |
|
""" |
|
Split train and val set of DOTA. |
|
|
|
Notes: |
|
The directory structure assumed for the DOTA dataset: |
|
- data_root |
|
- images |
|
- train |
|
- val |
|
- labels |
|
- train |
|
- val |
|
and the output directory structure is: |
|
- save_dir |
|
- images |
|
- train |
|
- val |
|
- labels |
|
- train |
|
- val |
|
""" |
|
crop_sizes, gaps = [], [] |
|
for r in rates: |
|
crop_sizes.append(int(crop_size / r)) |
|
gaps.append(int(gap / r)) |
|
for split in ["train", "val"]: |
|
split_images_and_labels(data_root, save_dir, split, crop_sizes, gaps) |
|
|
|
|
|
def split_test(data_root, save_dir, crop_size=1024, gap=200, rates=[1.0]): |
|
""" |
|
Split test set of DOTA, labels are not included within this set. |
|
|
|
Notes: |
|
The directory structure assumed for the DOTA dataset: |
|
- data_root |
|
- images |
|
- test |
|
and the output directory structure is: |
|
- save_dir |
|
- images |
|
- test |
|
""" |
|
crop_sizes, gaps = [], [] |
|
for r in rates: |
|
crop_sizes.append(int(crop_size / r)) |
|
gaps.append(int(gap / r)) |
|
save_dir = Path(save_dir) / "images" / "test" |
|
save_dir.mkdir(parents=True, exist_ok=True) |
|
|
|
im_dir = Path(data_root) / "images" / "test" |
|
assert im_dir.exists(), f"Can't find {im_dir}, please check your data root." |
|
im_files = glob(str(im_dir / "*")) |
|
for im_file in tqdm(im_files, total=len(im_files), desc="test"): |
|
w, h = exif_size(Image.open(im_file)) |
|
windows = get_windows((h, w), crop_sizes=crop_sizes, gaps=gaps) |
|
im = cv2.imread(im_file) |
|
name = Path(im_file).stem |
|
for window in windows: |
|
x_start, y_start, x_stop, y_stop = window.tolist() |
|
new_name = f"{name}__{x_stop - x_start}__{x_start}___{y_start}" |
|
patch_im = im[y_start:y_stop, x_start:x_stop] |
|
cv2.imwrite(str(save_dir / f"{new_name}.jpg"), patch_im) |
|
|
|
|
|
if __name__ == "__main__": |
|
split_trainval(data_root="DOTAv2", save_dir="DOTAv2-split") |
|
split_test(data_root="DOTAv2", save_dir="DOTAv2-split") |
|
|