|
|
|
""" |
|
Check a model's accuracy on a test or val split of a dataset. |
|
|
|
Usage: |
|
$ yolo mode=val model=yolov8n.pt data=coco128.yaml imgsz=640 |
|
|
|
Usage - formats: |
|
$ yolo mode=val model=yolov8n.pt # PyTorch |
|
yolov8n.torchscript # TorchScript |
|
yolov8n.onnx # ONNX Runtime or OpenCV DNN with dnn=True |
|
yolov8n_openvino_model # OpenVINO |
|
yolov8n.engine # TensorRT |
|
yolov8n.mlpackage # CoreML (macOS-only) |
|
yolov8n_saved_model # TensorFlow SavedModel |
|
yolov8n.pb # TensorFlow GraphDef |
|
yolov8n.tflite # TensorFlow Lite |
|
yolov8n_edgetpu.tflite # TensorFlow Edge TPU |
|
yolov8n_paddle_model # PaddlePaddle |
|
yolov8n_ncnn_model # NCNN |
|
""" |
|
|
|
import json |
|
import time |
|
from pathlib import Path |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from ultralytics.cfg import get_cfg, get_save_dir |
|
from ultralytics.data.utils import check_cls_dataset, check_det_dataset |
|
from ultralytics.nn.autobackend import AutoBackend |
|
from ultralytics.utils import LOGGER, TQDM, callbacks, colorstr, emojis |
|
from ultralytics.utils.checks import check_imgsz |
|
from ultralytics.utils.ops import Profile |
|
from ultralytics.utils.torch_utils import de_parallel, select_device, smart_inference_mode |
|
|
|
|
|
class BaseValidator: |
|
""" |
|
BaseValidator. |
|
|
|
A base class for creating validators. |
|
|
|
Attributes: |
|
args (SimpleNamespace): Configuration for the validator. |
|
dataloader (DataLoader): Dataloader to use for validation. |
|
pbar (tqdm): Progress bar to update during validation. |
|
model (nn.Module): Model to validate. |
|
data (dict): Data dictionary. |
|
device (torch.device): Device to use for validation. |
|
batch_i (int): Current batch index. |
|
training (bool): Whether the model is in training mode. |
|
names (dict): Class names. |
|
seen: Records the number of images seen so far during validation. |
|
stats: Placeholder for statistics during validation. |
|
confusion_matrix: Placeholder for a confusion matrix. |
|
nc: Number of classes. |
|
iouv: (torch.Tensor): IoU thresholds from 0.50 to 0.95 in spaces of 0.05. |
|
jdict (dict): Dictionary to store JSON validation results. |
|
speed (dict): Dictionary with keys 'preprocess', 'inference', 'loss', 'postprocess' and their respective |
|
batch processing times in milliseconds. |
|
save_dir (Path): Directory to save results. |
|
plots (dict): Dictionary to store plots for visualization. |
|
callbacks (dict): Dictionary to store various callback functions. |
|
""" |
|
|
|
def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None): |
|
""" |
|
Initializes a BaseValidator instance. |
|
|
|
Args: |
|
dataloader (torch.utils.data.DataLoader): Dataloader to be used for validation. |
|
save_dir (Path, optional): Directory to save results. |
|
pbar (tqdm.tqdm): Progress bar for displaying progress. |
|
args (SimpleNamespace): Configuration for the validator. |
|
_callbacks (dict): Dictionary to store various callback functions. |
|
""" |
|
self.args = get_cfg(overrides=args) |
|
self.dataloader = dataloader |
|
self.pbar = pbar |
|
self.stride = None |
|
self.data = None |
|
self.device = None |
|
self.batch_i = None |
|
self.training = True |
|
self.names = None |
|
self.seen = None |
|
self.stats = None |
|
self.confusion_matrix = None |
|
self.nc = None |
|
self.iouv = None |
|
self.jdict = None |
|
self.speed = {"preprocess": 0.0, "inference": 0.0, "loss": 0.0, "postprocess": 0.0} |
|
|
|
self.save_dir = save_dir or get_save_dir(self.args) |
|
(self.save_dir / "labels" if self.args.save_txt else self.save_dir).mkdir(parents=True, exist_ok=True) |
|
if self.args.conf is None: |
|
self.args.conf = 0.001 |
|
self.args.imgsz = check_imgsz(self.args.imgsz, max_dim=1) |
|
|
|
self.plots = {} |
|
self.callbacks = _callbacks or callbacks.get_default_callbacks() |
|
|
|
@smart_inference_mode() |
|
def __call__(self, trainer=None, model=None): |
|
"""Supports validation of a pre-trained model if passed or a model being trained if trainer is passed (trainer |
|
gets priority). |
|
""" |
|
self.training = trainer is not None |
|
augment = self.args.augment and (not self.training) |
|
if self.training: |
|
self.device = trainer.device |
|
self.data = trainer.data |
|
|
|
model = trainer.ema.ema or trainer.model |
|
model = model.half() if self.args.half else model.float() |
|
|
|
self.loss = torch.zeros_like(trainer.loss_items, device=trainer.device) |
|
self.args.plots &= trainer.stopper.possible_stop or (trainer.epoch == trainer.epochs - 1) |
|
model.eval() |
|
else: |
|
callbacks.add_integration_callbacks(self) |
|
model = AutoBackend( |
|
weights=model or self.args.model, |
|
device=select_device(self.args.device, self.args.batch), |
|
dnn=self.args.dnn, |
|
data=self.args.data, |
|
fp16=self.args.half, |
|
) |
|
|
|
self.device = model.device |
|
self.args.half = model.fp16 |
|
stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine |
|
imgsz = check_imgsz(self.args.imgsz, stride=stride) |
|
if engine: |
|
self.args.batch = model.batch_size |
|
elif not pt and not jit: |
|
self.args.batch = 1 |
|
LOGGER.info(f"Forcing batch=1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models") |
|
|
|
if str(self.args.data).split(".")[-1] in ("yaml", "yml"): |
|
self.data = check_det_dataset(self.args.data) |
|
elif self.args.task == "classify": |
|
self.data = check_cls_dataset(self.args.data, split=self.args.split) |
|
else: |
|
raise FileNotFoundError(emojis(f"Dataset '{self.args.data}' for task={self.args.task} not found β")) |
|
|
|
if self.device.type in ("cpu", "mps"): |
|
self.args.workers = 0 |
|
if not pt: |
|
self.args.rect = False |
|
self.stride = model.stride |
|
self.dataloader = self.dataloader or self.get_dataloader(self.data.get(self.args.split), self.args.batch) |
|
|
|
model.eval() |
|
model.warmup(imgsz=(1 if pt else self.args.batch, 3, imgsz, imgsz)) |
|
|
|
self.run_callbacks("on_val_start") |
|
dt = ( |
|
Profile(device=self.device), |
|
Profile(device=self.device), |
|
Profile(device=self.device), |
|
Profile(device=self.device), |
|
) |
|
bar = TQDM(self.dataloader, desc=self.get_desc(), total=len(self.dataloader)) |
|
self.init_metrics(de_parallel(model)) |
|
self.jdict = [] |
|
for batch_i, batch in enumerate(bar): |
|
self.run_callbacks("on_val_batch_start") |
|
self.batch_i = batch_i |
|
|
|
with dt[0]: |
|
batch = self.preprocess(batch) |
|
|
|
|
|
with dt[1]: |
|
preds = model(batch["img"], augment=augment) |
|
|
|
|
|
with dt[2]: |
|
if self.training: |
|
self.loss += model.loss(batch, preds)[1] |
|
|
|
|
|
with dt[3]: |
|
preds = self.postprocess(preds) |
|
|
|
self.update_metrics(preds, batch) |
|
if self.args.plots and batch_i < 3: |
|
self.plot_val_samples(batch, batch_i) |
|
self.plot_predictions(batch, preds, batch_i) |
|
|
|
self.run_callbacks("on_val_batch_end") |
|
stats = self.get_stats() |
|
self.check_stats(stats) |
|
self.speed = dict(zip(self.speed.keys(), (x.t / len(self.dataloader.dataset) * 1e3 for x in dt))) |
|
self.finalize_metrics() |
|
if not (self.args.save_json and self.is_coco and len(self.jdict)): |
|
self.print_results() |
|
self.run_callbacks("on_val_end") |
|
if self.training: |
|
model.float() |
|
if self.args.save_json and self.jdict: |
|
with open(str(self.save_dir / "predictions.json"), "w") as f: |
|
LOGGER.info(f"Saving {f.name}...") |
|
json.dump(self.jdict, f) |
|
stats = self.eval_json(stats) |
|
stats['fitness'] = stats['metrics/mAP50-95(B)'] |
|
results = {**stats, **trainer.label_loss_items(self.loss.cpu() / len(self.dataloader), prefix="val")} |
|
return {k: round(float(v), 5) for k, v in results.items()} |
|
else: |
|
LOGGER.info( |
|
"Speed: %.1fms preprocess, %.1fms inference, %.1fms loss, %.1fms postprocess per image" |
|
% tuple(self.speed.values()) |
|
) |
|
if self.args.save_json and self.jdict: |
|
with open(str(self.save_dir / "predictions.json"), "w") as f: |
|
LOGGER.info(f"Saving {f.name}...") |
|
json.dump(self.jdict, f) |
|
stats = self.eval_json(stats) |
|
if self.args.plots or self.args.save_json: |
|
LOGGER.info(f"Results saved to {colorstr('bold', self.save_dir)}") |
|
return stats |
|
|
|
def match_predictions(self, pred_classes, true_classes, iou, use_scipy=False): |
|
""" |
|
Matches predictions to ground truth objects (pred_classes, true_classes) using IoU. |
|
|
|
Args: |
|
pred_classes (torch.Tensor): Predicted class indices of shape(N,). |
|
true_classes (torch.Tensor): Target class indices of shape(M,). |
|
iou (torch.Tensor): An NxM tensor containing the pairwise IoU values for predictions and ground of truth |
|
use_scipy (bool): Whether to use scipy for matching (more precise). |
|
|
|
Returns: |
|
(torch.Tensor): Correct tensor of shape(N,10) for 10 IoU thresholds. |
|
""" |
|
|
|
correct = np.zeros((pred_classes.shape[0], self.iouv.shape[0])).astype(bool) |
|
|
|
correct_class = true_classes[:, None] == pred_classes |
|
iou = iou * correct_class |
|
iou = iou.cpu().numpy() |
|
for i, threshold in enumerate(self.iouv.cpu().tolist()): |
|
if use_scipy: |
|
|
|
import scipy |
|
|
|
cost_matrix = iou * (iou >= threshold) |
|
if cost_matrix.any(): |
|
labels_idx, detections_idx = scipy.optimize.linear_sum_assignment(cost_matrix, maximize=True) |
|
valid = cost_matrix[labels_idx, detections_idx] > 0 |
|
if valid.any(): |
|
correct[detections_idx[valid], i] = True |
|
else: |
|
matches = np.nonzero(iou >= threshold) |
|
matches = np.array(matches).T |
|
if matches.shape[0]: |
|
if matches.shape[0] > 1: |
|
matches = matches[iou[matches[:, 0], matches[:, 1]].argsort()[::-1]] |
|
matches = matches[np.unique(matches[:, 1], return_index=True)[1]] |
|
|
|
matches = matches[np.unique(matches[:, 0], return_index=True)[1]] |
|
correct[matches[:, 1].astype(int), i] = True |
|
return torch.tensor(correct, dtype=torch.bool, device=pred_classes.device) |
|
|
|
def add_callback(self, event: str, callback): |
|
"""Appends the given callback.""" |
|
self.callbacks[event].append(callback) |
|
|
|
def run_callbacks(self, event: str): |
|
"""Runs all callbacks associated with a specified event.""" |
|
for callback in self.callbacks.get(event, []): |
|
callback(self) |
|
|
|
def get_dataloader(self, dataset_path, batch_size): |
|
"""Get data loader from dataset path and batch size.""" |
|
raise NotImplementedError("get_dataloader function not implemented for this validator") |
|
|
|
def build_dataset(self, img_path): |
|
"""Build dataset.""" |
|
raise NotImplementedError("build_dataset function not implemented in validator") |
|
|
|
def preprocess(self, batch): |
|
"""Preprocesses an input batch.""" |
|
return batch |
|
|
|
def postprocess(self, preds): |
|
"""Describes and summarizes the purpose of 'postprocess()' but no details mentioned.""" |
|
return preds |
|
|
|
def init_metrics(self, model): |
|
"""Initialize performance metrics for the YOLO model.""" |
|
pass |
|
|
|
def update_metrics(self, preds, batch): |
|
"""Updates metrics based on predictions and batch.""" |
|
pass |
|
|
|
def finalize_metrics(self, *args, **kwargs): |
|
"""Finalizes and returns all metrics.""" |
|
pass |
|
|
|
def get_stats(self): |
|
"""Returns statistics about the model's performance.""" |
|
return {} |
|
|
|
def check_stats(self, stats): |
|
"""Checks statistics.""" |
|
pass |
|
|
|
def print_results(self): |
|
"""Prints the results of the model's predictions.""" |
|
pass |
|
|
|
def get_desc(self): |
|
"""Get description of the YOLO model.""" |
|
pass |
|
|
|
@property |
|
def metric_keys(self): |
|
"""Returns the metric keys used in YOLO training/validation.""" |
|
return [] |
|
|
|
def on_plot(self, name, data=None): |
|
"""Registers plots (e.g. to be consumed in callbacks)""" |
|
self.plots[Path(name)] = {"data": data, "timestamp": time.time()} |
|
|
|
|
|
def plot_val_samples(self, batch, ni): |
|
"""Plots validation samples during training.""" |
|
pass |
|
|
|
def plot_predictions(self, batch, preds, ni): |
|
"""Plots YOLO model predictions on batch images.""" |
|
pass |
|
|
|
def pred_to_json(self, preds, batch): |
|
"""Convert predictions to JSON format.""" |
|
pass |
|
|
|
def eval_json(self, stats): |
|
"""Evaluate and return JSON format of prediction statistics.""" |
|
pass |
|
|