EdBianchi commited on
Commit
3ecc5f6
1 Parent(s): fa36a09

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -12
app.py CHANGED
@@ -22,11 +22,11 @@ def compute(image):
22
  st.image(image, use_column_width=True)
23
 
24
  with st.container():
25
- st.write("#### Different classification outputs at different threshold values:")
26
  col1, col2, col6 = st.columns(3)
27
- col1.metric(predictions[0]['label'], str(round(predictions[0]['score']+100, 1))+"%")
28
- col2.metric(predictions[1]['label'], str(round(predictions[1]['score']+100, 1))+"%")
29
- col6.metric(predictions[2]['label'], str(round(predictions[2]['score']+100, 1))+"%")
30
  return None
31
 
32
  # INIT
@@ -38,22 +38,18 @@ st.write("# Fire in Forest Environments")
38
  st.write("""Wildfires or forest fires are unpredictable catastrophic and destructive events that affect rural areas.
39
  The impact of these events affects both vegetation and wildlife.
40
 
41
- This application showcases the "vit-fire-detection" model, a version of google vit-base-patch16-224-in21k vision transformer fine-tuned for smoke and fire detection.
42
- In particular, we can imagine a setup in which webcams, drones, or other recording devices take pictures of a wild environment every t seconds or minutes. The proposed system is then able to classify the current situation as normal, smoke, or fire.
43
-
44
- The system is not real-time since wildfires are events that evolve more slowly than others (e.g., traffic accidents).
45
  """)
46
  #st.image("./demo.jpg", use_column_width=True)
47
  st.write("#### Upload an image to see the classifier in action")
48
-
49
- demo_img = Image.open("./demo.jpg")
50
- compute(demo_img)
51
-
52
  # INPUT IMAGE
53
  file_name = st.file_uploader("")
54
  if file_name is not None:
55
  image = Image.open(file_name)
56
  compute(image)
57
 
 
 
 
58
  # SIDEBAR
59
  #st.sidebar.write("""""")
 
22
  st.image(image, use_column_width=True)
23
 
24
  with st.container():
25
+ st.write("#### Classification Outputs:")
26
  col1, col2, col6 = st.columns(3)
27
+ col1.metric(predictions[0]['label'], str(round(predictions[0]['score']*100, 1))+"%")
28
+ col2.metric(predictions[1]['label'], str(round(predictions[1]['score']*100, 1))+"%")
29
+ col6.metric(predictions[2]['label'], str(round(predictions[2]['score']*100, 1))+"%")
30
  return None
31
 
32
  # INIT
 
38
  st.write("""Wildfires or forest fires are unpredictable catastrophic and destructive events that affect rural areas.
39
  The impact of these events affects both vegetation and wildlife.
40
 
41
+ This application showcases the "vit-fire-detection" model, a version of google vit-base-patch16-224-in21k vision transformer fine-tuned for smoke and fire detection. In particular, we can imagine a setup in which webcams, drones, or other recording devices take pictures of a wild environment every t seconds or minutes. The proposed system is then able to classify the current situation as normal, smoke, or fire.
 
 
 
42
  """)
43
  #st.image("./demo.jpg", use_column_width=True)
44
  st.write("#### Upload an image to see the classifier in action")
 
 
 
 
45
  # INPUT IMAGE
46
  file_name = st.file_uploader("")
47
  if file_name is not None:
48
  image = Image.open(file_name)
49
  compute(image)
50
 
51
+ demo_img = Image.open("./demo.jpg")
52
+ compute(demo_img)
53
+
54
  # SIDEBAR
55
  #st.sidebar.write("""""")