File size: 6,587 Bytes
c173d9b
 
8da2b37
c173d9b
 
8da2b37
 
 
c173d9b
 
 
 
 
 
8da2b37
 
c173d9b
8da2b37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c173d9b
 
8da2b37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c173d9b
8da2b37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c173d9b
8da2b37
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import logging
import math
import os
import tempfile
import time
import yt_dlp as youtube_dl
from fastapi import FastAPI, UploadFile, Form, HTTPException
from fastapi.responses import HTMLResponse
import jax.numpy as jnp
import numpy as np
from transformers.models.whisper.tokenization_whisper import TO_LANGUAGE_CODE
from transformers.pipelines.audio_utils import ffmpeg_read
from whisper_jax import FlaxWhisperPipline

cc.initialize_cache("./jax_cache")
checkpoint = "openai/whisper-large-v3"

BATCH_SIZE = 32
CHUNK_LENGTH_S = 30
NUM_PROC = 32
FILE_LIMIT_MB = 10000
YT_LENGTH_LIMIT_S = 15000  # limit to 2 hour YouTube files

app = FastAPI(title="Whisper JAX: The Fastest Whisper API ⚡️")

logger = logging.getLogger("whisper-jax-app")
logger.setLevel(logging.INFO)
ch = logging.StreamHandler()
ch.setLevel(logging.INFO)
formatter = logging.Formatter("%(asctime)s;%(levelname)s;%(message)s", "%Y-%m-%d %H:%M:%S")
ch.setFormatter(formatter)
logger.addHandler(ch)

pipeline = FlaxWhisperPipline(checkpoint, dtype=jnp.bfloat16, batch_size=BATCH_SIZE)
stride_length_s = CHUNK_LENGTH_S / 6
chunk_len = round(CHUNK_LENGTH_S * pipeline.feature_extractor.sampling_rate)
stride_left = stride_right = round(stride_length_s * pipeline.feature_extractor.sampling_rate)
step = chunk_len - stride_left - stride_right

# do a pre-compile step so that the first user to use the demo isn't hit with a long transcription time
logger.info("compiling forward call...")
start = time.time()
random_inputs = {
    "input_features": np.ones(
        (BATCH_SIZE, pipeline.model.config.num_mel_bins, 2 * pipeline.model.config.max_source_positions)
    )
}
random_timestamps = pipeline.forward(random_inputs, batch_size=BATCH_SIZE, return_timestamps=True)
compile_time = time.time() - start
logger.info(f"compiled in {compile_time}s")

@app.post("/transcribe_audio")
async def transcribe_chunked_audio(audio_file: UploadFile, task: str = "transcribe", return_timestamps: bool = False):
    logger.info("loading audio file...")
    if not audio_file:
        logger.warning("No audio file")
        raise HTTPException(status_code=400, detail="No audio file submitted!")
    file_size_mb = os.stat(audio_file.filename).st_size / (1024 * 1024)
    if file_size_mb > FILE_LIMIT_MB:
        logger.warning("Max file size exceeded")
        raise HTTPException(status_code=400, detail=f"File size exceeds file size limit. Got file of size {file_size_mb:.2f}MB for a limit of {FILE_LIMIT_MB}MB.")

    with open(audio_file.filename, "rb") as f:
        inputs = f.read()

    inputs = ffmpeg_read(inputs, pipeline.feature_extractor.sampling_rate)
    inputs = {"array": inputs, "sampling_rate": pipeline.feature_extractor.sampling_rate}
    logger.info("done loading")
    text, runtime = tqdm_generate(inputs, task=task, return_timestamps=return_timestamps)
    return {"text": text, "runtime": runtime}

@app.post("/transcribe_youtube")
async def transcribe_youtube(yt_url: str = Form(...), task: str = "transcribe", return_timestamps: bool = False):
    logger.info("loading youtube file...")
    html_embed_str = _return_yt_html_embed(yt_url)
    with tempfile.TemporaryDirectory() as tmpdirname:
        filepath = os.path.join(tmpdirname, "video.mp4")
        download_yt_audio(yt_url, filepath)

        with open(filepath, "rb") as f:
            inputs = f.read()

    inputs = ffmpeg_read(inputs, pipeline.feature_extractor.sampling_rate)
    inputs = {"array": inputs, "sampling_rate": pipeline.feature_extractor.sampling_rate}
    logger.info("done loading...")
    text, runtime = tqdm_generate(inputs, task=task, return_timestamps=return_timestamps)
    return {"html_embed": html_embed_str, "text": text, "runtime": runtime}

def tqdm_generate(inputs: dict, task: str, return_timestamps: bool):
    inputs_len = inputs["array"].shape[0]
    all_chunk_start_idx = np.arange(0, inputs_len, step)
    num_samples = len(all_chunk_start_idx)
    num_batches = math.ceil(num_samples / BATCH_SIZE)

    dataloader = pipeline.preprocess_batch(inputs, chunk_length_s=CHUNK_LENGTH_S, batch_size=BATCH_SIZE)
    model_outputs = []
    start_time = time.time()
    logger.info("transcribing...")
    # iterate over our chunked audio samples - always predict timestamps to reduce hallucinations
    for batch in dataloader:
        model_outputs.append(pipeline.forward(batch, batch_size=BATCH_SIZE, task=task, return_timestamps=True))
    runtime = time.time() - start_time
    logger.info("done transcription")

    logger.info("post-processing...")
    post_processed = pipeline.postprocess(model_outputs, return_timestamps=True)
    text = post_processed["text"]
    if return_timestamps:
        timestamps = post_processed.get("chunks")
        timestamps = [
            f"[{format_timestamp(chunk['timestamp'][0])} -> {format_timestamp(chunk['timestamp'][1])}] {chunk['text']}"
            for chunk in timestamps
        ]
        text = "\n".join(str(feature) for feature in timestamps)
    logger.info("done post-processing")
    return text, runtime

def _return_yt_html_embed(yt_url):
    video_id = yt_url.split("?v=")[-1]
    HTML_str = (
        f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
        " </center>"
    )
    return HTML_str

def download_yt_audio(yt_url, filename):
    info_loader = youtube_dl.YoutubeDL()
    try:
        info = info_loader.extract_info(yt_url, download=False)
    except youtube_dl.utils.DownloadError as err:
        raise HTTPException(status_code=400, detail=str(err))

    file_length = info["duration_string"]
    file_h_m_s = file_length.split(":")
    file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
    if len(file_h_m_s) == 1:
        file_h_m_s.insert(0, 0)
    if len(file_h_m_s) == 2:
        file_h_m_s.insert(0, 0)

    file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
    if file_length_s > YT_LENGTH_LIMIT_S:
        yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
        file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
        raise HTTPException(status_code=400, detail=f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")

    ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
    with youtube_dl.YoutubeDL(ydl_opts) as ydl:
        try:
            ydl.download([yt_url])
        except youtube_dl.utils.ExtractorError as err:
            raise HTTPException(status_code=400, detail=str(err))