# from fastbook import * from fastai.vision.all import * path = Path() path.ls(file_exts='.pkl') learn_inf = load_learner(path/'export.pkl') labels = learn_inf.dls.vocab def predict(img): img = PILImage.create(img) pred,pred_idx,probs = learn_inf.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} p = predict('images/grizzly.jpg') print(p) import gradio as gr gr.Interface(examples=['images/grizzly.jpg'],fn=predict, inputs=gr.inputs.Image(shape=(512, 512)), outputs=gr.outputs.Label(num_top_classes=3)).launch(share=True) # print(learn_inf.dls.vocab)