sentencebird commited on
Commit
219ebb0
1 Parent(s): d537a69

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +96 -0
app.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import streamlit.components.v1 as stc
3
+ import noisereduce as nr
4
+ import librosa
5
+ import soundfile as sf
6
+ import numpy as np
7
+ import plotly.graph_objects as go
8
+ import pickle
9
+
10
+ from pyannote.audio.utils.signal import Binarize
11
+ import torch
12
+
13
+ @st.cache
14
+ def speech_activity_detection_model():
15
+ # sad = torch.hub.load('pyannote-audio', 'sad_ami', source='local', device='cpu', batch_size=128)
16
+ with open('speech_activity_detection_model.pkl', 'rb') as f:
17
+ sad = pickle.load(f)
18
+ return sad
19
+
20
+ @st.cache
21
+ def trim_noise_part_from_speech(sad, fname, speech_wav, sr):
22
+ file_obj = {"uri": "filename", "audio": fname}
23
+ sad_scores = sad(file_obj)
24
+ binarize = Binarize(offset=0.52, onset=0.52, log_scale=True, min_duration_off=0.1, min_duration_on=0.1)
25
+ speech = binarize.apply(sad_scores, dimension=1)
26
+
27
+ noise_wav = np.zeros((speech_wav.shape[0], 0))
28
+ append_axis = 1 if speech_wav.ndim == 2 else 0
29
+ noise_ranges = []
30
+ noise_start = 0
31
+ for segmentation in speech.segmentation():
32
+ noise_end, next_noise_start = int(segmentation.start*sr), int(segmentation.end*sr)
33
+ noise_wav = np.append(noise_wav, speech_wav[:, noise_start:noise_end], axis=append_axis)
34
+ noise_ranges.append((noise_start/sr, noise_end/sr))
35
+ noise_start = next_noise_start
36
+ return noise_wav.T, noise_ranges
37
+
38
+ @st.cache
39
+ def trim_audio(data, rate, start_sec=None, end_sec=None):
40
+ start, end = int(start_sec * rate), int(end_sec * rate)
41
+ if data.ndim == 1: # mono
42
+ return data[start:end]
43
+ elif data.ndim == 2: # stereo
44
+ return data[:, start:end]
45
+
46
+ title = 'Audio noise reduction'
47
+ st.set_page_config(page_title=title, page_icon=":sound:")
48
+ st.title(title)
49
+
50
+ uploaded_file = st.file_uploader("Upload your audio file (.wav)")
51
+
52
+ is_file_uploaded = uploaded_file is not None
53
+ if not is_file_uploaded:
54
+ uploaded_file = 'sample.wav'
55
+
56
+ wav, sr = librosa.load(uploaded_file, sr=None)
57
+ wav_seconds = int(len(wav)/sr)
58
+
59
+ st.subheader('Original audio')
60
+ st.audio(uploaded_file)
61
+
62
+ st.subheader('Noise part')
63
+ noise_part_detection_method = st.radio('Noise source detection', ['Manually', 'Automatically (using speech activity detections)'])
64
+ if noise_part_detection_method == "Manually": # ノイズ区間は1箇所
65
+ default_ranges = (0.0, float(wav_seconds)) if is_file_uploaded else (73.0, float(wav_seconds))
66
+ noise_part_ranges = [st.slider("Select a part of the noise (sec)", 0.0, float(wav_seconds), default_ranges, step=0.1)]
67
+ noise_wav = trim_audio(wav, sr, noise_part_ranges[0][0], noise_part_ranges[0][1])
68
+
69
+ elif noise_part_detection_method == "Automatically (using speech activity detections)": # ノイズ区間が複数
70
+ with st.spinner('Please wait for Detecting the speech activities'):
71
+ sad = speech_activity_detection_model()
72
+ noise_wav, noise_part_ranges = trim_noise_part_from_speech(sad, uploaded_file, wav, sr)
73
+
74
+ fig = go.Figure()
75
+ x_wav = np.arange(len(wav)) / sr
76
+ fig.add_trace(go.Scatter(y=wav[::1000]))
77
+ for noise_part_range in noise_part_ranges:
78
+ fig.add_vrect(x0=int(noise_part_range[0]*sr/1000), x1=int(noise_part_range[1]*sr/1000), fillcolor="Red", opacity=0.2)
79
+ fig.update_layout(width=700, margin=dict(l=0, r=0, t=0, b=0, pad=0))
80
+ fig.update_yaxes(visible=False, ticklabelposition='inside', tickwidth=0)
81
+ st.plotly_chart(fig, use_container_with=True)
82
+
83
+ st.text('Noise audio')
84
+ sf.write('noise_clip.wav', noise_wav, sr)
85
+ noise_wav, sr = librosa.load('noise_clip.wav', sr=None)
86
+ st.audio('noise_clip.wav')
87
+
88
+ if st.button('Denoise the audio!'):
89
+ with st.spinner('Please wait for completion'):
90
+ nr_wav = nr.reduce_noise(audio_clip=wav, noise_clip=noise_wav, prop_decrease=1.0)
91
+
92
+ st.subheader('Denoised audio')
93
+ sf.write('nr_clip.wav', nr_wav, sr)
94
+ st.success('Done!')
95
+ st.text('Denoised audio')
96
+ st.audio('nr_clip.wav')