File size: 7,399 Bytes
e9c0973
d708cb9
e9c0973
 
 
 
 
 
0e0d14f
e9c0973
 
0cefe4a
e9c0973
 
 
 
 
d708cb9
e9c0973
d708cb9
e9c0973
 
 
 
 
 
 
 
 
 
 
 
 
0e0d14f
d708cb9
e9c0973
 
 
 
 
d708cb9
 
e9c0973
 
 
d708cb9
 
 
 
e9c0973
d708cb9
 
 
 
e9c0973
d708cb9
 
 
 
e9c0973
d708cb9
 
 
 
8ca00e0
d708cb9
8ca00e0
d708cb9
 
 
 
 
 
 
 
 
 
8ca00e0
 
 
 
 
 
d708cb9
 
 
 
 
8ca00e0
 
d708cb9
 
8ca00e0
 
 
d708cb9
8ca00e0
d708cb9
 
 
 
 
 
 
 
 
8ca00e0
d708cb9
8ca00e0
d708cb9
 
 
 
 
 
 
 
e9c0973
 
 
 
 
2676f5d
 
 
 
 
 
e9c0973
 
2676f5d
cb99a01
 
2676f5d
 
 
 
 
e9c0973
2676f5d
 
59d1f62
dcf594a
 
 
 
 
 
e9c0973
dcf594a
 
0cefe4a
 
 
 
e9c0973
dcf594a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d708cb9
 
 
 
 
 
 
185124d
cb99a01
d708cb9
 
 
 
 
 
cb99a01
 
 
d708cb9
cb99a01
d708cb9
 
 
cb99a01
e9c0973
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import os
from datetime import datetime
import gradio as gr
from pinecone import Pinecone
from huggingface_hub import whoami
from langchain.prompts import ChatPromptTemplate
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
from langchain.prompts.prompt import PromptTemplate
from langchain_groq import ChatGroq
from langchain.memory import ConversationBufferMemory
from langchain_community.vectorstores import Pinecone as PineconeVectorstore
from celsius_csrd_chatbot.utils import (
    make_html_source,
    make_pairs,
    _format_chat_history,
    _combine_documents,
    init_env,
    parse_output_llm_with_sources,
)
from celsius_csrd_chatbot.agent import make_graph_agent, display_graph

init_env()
demo_name = "ESRS_QA"
hf_model = "BAAI/bge-base-en-v1.5"

embeddings = HuggingFaceBgeEmbeddings(
    model_name=hf_model,
    encode_kwargs={"normalize_embeddings": True},
)

pc = Pinecone(api_key=os.getenv("PINECONE_API_KEY"))
index = pc.Index(os.getenv("PINECONE_API_INDEX"))
vectorstore = PineconeVectorstore(index, embeddings, "page_content")
llm = ChatGroq(temperature=0, model_name="llama-3.2-90b-text-preview")
agent = make_graph_agent(llm, vectorstore)

memory = ConversationBufferMemory(
    return_messages=True, output_key="answer", input_key="question"
)


async def chat(query, history):
    """taking a query and a message history, use a pipeline (reformulation, retriever, answering) to yield a tuple of:
    (messages in gradio format, messages in langchain format, source documents)"""

    date_now = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    print(f">> NEW QUESTION ({date_now}) : {query}")
    inputs = {"query": query}
    result = agent.astream_events(inputs, version="v1")

    docs = []
    docs_html = ""
    output_query = ""
    start_streaming = False

    steps_display = {
        "categorize_esrs": ("🔄️ Analyzing user query", True),
        "retrieve_documents": ("🔄️ Searching in the knowledge base", True),
    }

    try:
        async for event in result:
            print(event)
            if event["event"] == "on_chat_model_stream":
                # print("line 66")
                if start_streaming == False:
                    # print("line 68")
                    start_streaming = True
                    history[-1] = (query, "")

                new_token = event["data"]["chunk"].content
                previous_answer = history[-1][1]
                previous_answer = previous_answer if previous_answer is not None else ""
                answer_yet = previous_answer + new_token
                answer_yet = parse_output_llm_with_sources(answer_yet)
                history[-1] = (query, answer_yet)

            elif (
                event["name"] == "answer_rag_wrong"
                and event["event"] == "on_chain_stream"
            ):
                history[-1] = (query, event["data"]["chunk"]["answer"])

            elif (
                event["name"] == "retrieve_documents"
                and event["event"] == "on_chain_end"
            ):
                try:
                    # print(event)
                    # print("line 84")
                    docs = event["data"]["output"]["documents"]
                    docs_html = []
                    for i, doc in enumerate(docs, 1):
                        docs_html.append(make_html_source(i, doc))
                    # print(docs_html)
                    docs_html = "".join(docs_html)
                    # print(docs_html)
                except Exception as e:
                    print(f"Error getting documents: {e}")
                    print(event)

            for event_name, (
                event_description,
                display_output,
            ) in steps_display.items():
                if event["name"] == event_name:
                    # print("line 99")
                    if event["event"] == "on_chain_start":
                        # print("line 101")
                        answer_yet = event_description
                        history[-1] = (query, answer_yet)

            history = [tuple(x) for x in history]
            yield history, docs_html

    except Exception as e:
        raise gr.Error(f"{e}")


with open("./assets/style.css", "r") as f:
    css = f.read()

# Set up Gradio Theme
theme = gr.themes.Base(
    primary_hue="blue",
    secondary_hue="red",
    font=[gr.themes.GoogleFont("Poppins"), "ui-sans-serif", "system-ui", "sans-serif"],
)


init_prompt = """
Hello, I am ESRS Q&A, a conversational assistant designed to help you understand the content of European Sustainability Reporting Standards (ESRS). I will answer your questions based **on the official definition of each ESRS as well as complementary guidelines**.

⚠️ Limitations
*Please note that this chatbot is in an early stage phase, it is not perfect and may sometimes give irrelevant answers. If you are not satisfied with the answer, please ask a more specific question or report your feedback to help us improve the system.*

What do you want to learn ?
"""


with gr.Blocks(title=f"{demo_name}", css=css, theme=theme) as demo:
    with gr.Column(visible=True) as bloc_2:
        with gr.Tab("ESRS Q&A"):
            with gr.Row():
                with gr.Column(scale=2):
                    chatbot = gr.Chatbot(
                        value=[(None, init_prompt)],
                        show_copy_button=True,
                        show_label=False,
                        elem_id="chatbot",
                        layout="panel",
                        avatar_images=(
                            None,
                            "https://i.ibb.co/cN0czLp/celsius-logo.png",
                        ),
                    )
                    state = gr.State([])

                    with gr.Row(elem_id="input-message"):
                        ask = gr.Textbox(
                            placeholder="Ask me anything here!",
                            show_label=False,
                            scale=7,
                            lines=1,
                            interactive=True,
                            elem_id="input-textbox",
                        )

                with gr.Column(scale=1, variant="panel", elem_id="right-panel"):
                    with gr.Tab("Sources", elem_id="tab-citations", id=1):
                        sources_textbox = gr.HTML(
                            show_label=False, elem_id="sources-textbox"
                        )
                        docs_textbox = gr.State("")

        with gr.Tab("About", elem_classes="max-height other-tabs"):
            with gr.Row():
                with gr.Column(scale=1):
                    gr.Markdown("WIP")

    def start_chat(query, history):
        history = history + [(query, None)]
        history = [tuple(x) for x in history]
        return (gr.update(interactive=False), history)

    def finish_chat():
        return gr.update(interactive=True, value="")

    ask.submit(
        start_chat,
        [ask, chatbot],
        [ask, chatbot],
        queue=False,
        api_name="start_chat_textbox",
    ).then(
        fn=chat,
        inputs=[
            ask,
            chatbot,
        ],
        outputs=[chatbot, sources_textbox],
    ).then(
        finish_chat, None, [ask], api_name="finish_chat_textbox"
    )


demo.launch(
    share=True,
    debug=True,
)