File size: 15,687 Bytes
a5686cb
 
a4595fc
a5686cb
71ab0a8
19a9d09
 
 
91c4196
c48e036
19a9d09
91c4196
 
 
 
fa7f0c5
669d503
99e2b1f
c48e036
 
 
 
 
99e2b1f
 
fdf1622
 
 
99e2b1f
 
a4595fc
91c4196
99e2b1f
 
fdf1622
 
 
669d503
 
 
a4595fc
91c4196
 
 
 
 
 
 
 
 
871aa55
91c4196
a4595fc
0b4f4a2
91c4196
 
 
 
c48e036
0b4f4a2
 
 
 
 
 
 
 
 
 
 
 
9f6c9bd
 
 
 
 
 
 
 
99e2b1f
f3d1657
a4595fc
 
 
 
 
 
 
 
871aa55
 
 
bf93486
c48e036
 
 
68fbb90
 
f2033dd
68fbb90
121f27f
 
 
c48e036
121f27f
d271714
 
121f27f
 
91c4196
 
 
 
 
 
 
 
 
 
 
 
 
fdf1622
871aa55
 
 
a422880
121f27f
a422880
 
a5686cb
 
91c4196
 
 
 
 
 
 
 
 
 
 
dc1d7e6
 
fdf1622
 
 
 
91c4196
 
 
 
 
bf93486
60164e9
f3d1657
91c4196
19a9d09
d271714
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19a9d09
d271714
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fd3aad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d271714
 
 
 
af9539a
d271714
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
871aa55
a5686cb
d271714
 
 
 
 
 
19a9d09
d271714
 
 
 
 
 
19a9d09
d271714
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4dd3ec8
d730458
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
import gradio as gr
from haystack.document_stores import FAISSDocumentStore
from haystack.nodes import EmbeddingRetriever
import openai
import os
from utils import (
    make_pairs,
    set_openai_api_key,
    create_user_id,
    to_completion,
)
import numpy as np
from datetime import datetime
from azure.storage.fileshare import ShareServiceClient


system_template = {"role": "system", "content": os.environ["content"]}

openai.api_type = "azure"
openai.api_key = os.environ["api_key"]
openai.api_base = os.environ["ressource_endpoint"]
openai.api_version = "2022-12-01"

retrieve_all = EmbeddingRetriever(
    document_store=FAISSDocumentStore.load(
        index_path="./documents/climate_gpt.faiss",
        config_path="./documents/climate_gpt.json",
    ),
    embedding_model="sentence-transformers/multi-qa-mpnet-base-dot-v1",
    model_format="sentence_transformers",
)

retrieve_giec = EmbeddingRetriever(
    document_store=FAISSDocumentStore.load(
        index_path="./documents/climate_gpt_only_giec.faiss",
        config_path="./documents/climate_gpt_only_giec.json",
    ),
    embedding_model="sentence-transformers/multi-qa-mpnet-base-dot-v1",
    model_format="sentence_transformers",
)

credential = {
    "account_key": os.environ["account_key"],
    "account_name": os.environ["account_name"],
}

account_url = os.environ["account_url"]
file_share_name = "climategpt"
service = ShareServiceClient(account_url=account_url, credential=credential)
share_client = service.get_share_client(file_share_name)
user_id = create_user_id(10)


def chat(
    user_id: str,
    query: str,
    history: list = [system_template],
    report_type: str = "All available",
    threshold: float = 0.555,
) -> tuple:
    """retrieve relevant documents in the document store then query gpt-turbo

    Args:
        query (str): user message.
        history (list, optional): history of the conversation. Defaults to [system_template].
        report_type (str, optional): should be "All available" or "IPCC only". Defaults to "All available".
        threshold (float, optional): similarity threshold, don't increase more than 0.568. Defaults to 0.56.

    Yields:
        tuple: chat gradio format, chat openai format, sources used.
    """

    if report_type == "All available":
        retriever = retrieve_all
    elif report_type == "IPCC only":
        retriever = retrieve_giec
    else:
        raise Exception("report_type arg should be in (All available, IPCC only)")

    docs = retriever.retrieve(query=query, top_k=10)

    messages = history + [{"role": "user", "content": query}]
    sources = "\n\n".join(
        f"doc {i}: {d.meta['file_name']} page {d.meta['page_number']}\n{d.content}"
        for i, d in enumerate(docs, 1)
        if d.score > threshold
    )

    if sources:
        messages.append(
            {"role": "system", "content": f"{os.environ['sources']}\n\n{sources}"}
        )

    response = openai.Completion.create(
        engine="climateGPT",
        prompt=to_completion(messages),
        temperature=0.2,
        stream=True,
        max_tokens=1024,
    )

    if sources:
        complete_response = ""
        messages.pop()
    else:
        sources = "No climate science report was used to provide this answer."
        complete_response = "No relevant documents found in the climate science reports, for a sourced answer you may want to try a more specific question.\n\n"

    messages.append({"role": "assistant", "content": complete_response})
    timestamp = str(datetime.now().timestamp())
    file = user_id[0] + timestamp + ".json"
    logs = {
        "user_id": user_id[0],
        "prompt": query,
        "retrived": sources,
        "report_type": report_type,
        "prompt_eng": messages[0],
        "answer": messages[-1]["content"],
        "time": timestamp,
    }
    log_on_azure(file, logs, share_client)

    for chunk in response:
        if (
            chunk_message := chunk["choices"][0].get("text")
        ) and chunk_message != "<|im_end|>":
            complete_response += chunk_message
            messages[-1]["content"] = complete_response
            gradio_format = make_pairs([a["content"] for a in messages[1:]])
            yield gradio_format, messages, sources


def save_feedback(feed: str, user_id):
    if len(feed) > 1:
        timestamp = str(datetime.now().timestamp())
        file = user_id[0] + timestamp + ".json"
        logs = {
            "user_id": user_id[0],
            "feedback": feed,
            "time": timestamp,
        }
        log_on_azure(file, logs, share_client)
        return "Thanks for your feedbacks"


def reset_textbox():
    return gr.update(value="")


def log_on_azure(file, logs, share_client):
    file_client = share_client.get_file_client(file)
    file_client.upload_file(str(logs))


# Gradio
css_code = ".gradio-container {background-image: url('file=background.jpg');background-position: top right}"
with gr.Blocks(title="🌍 ClimateGPT Ekimetrics", css=css_code) as demo:
    user_id_state = gr.State([user_id])

    gr.Markdown("# Welcome to Climate.GPT 🌍 !")
    gr.Markdown(
        """
Climate change and environmental disruptions have become some of the most pressing challenges facing our planet today. As global temperatures rise and ecosystems suffer, it is essential for individuals to understand the gravity of the situation in order to make informed decisions and advocate for appropriate policy changes. 

However, comprehending the vast and complex scientific information can be daunting, as the scientific consensus references, such as the Intergovernmental Panel on Climate Change (IPCC) reports, span thousands of pages and are often laden with technical jargon. To bridge this gap and make climate science more accessible, we introduce ClimateGPT as a tool to distill expert-level knowledge into easily digestible insights about climate science.

ClimateGPT harnesses modern OCR techniques to parse and preprocess IPCC reports. By leveraging state-of-the-art question-answering algorithms, ClimateGPT is able to sift through the extensive collection of climate scientific reports and identify relevant passages in response to user inquiries. Furthermore, the integration of the ChatGPT API allows ClimateGPT to present complex data in a user-friendly manner, summarizing key points and facilitating communication of climate science to a wider audience. This innovative chatbot effectively puts a climate expert in your pocket, empowering you to engage with crucial environmental issues in a more informed and meaningful way.
## How to use Climate GPT

### Getting started

- In the chatbot section, simply type your climate-related question, and ClimateGPT will provide an answer with references to relevant IPCC reports.
    - ClimateGPT retrieves specific passages from the IPCC reports to help answer your question accurately.
    - Source information, including page numbers and passages, is displayed on the right side of the screen for easy verification.
    - Feel free to ask follow-up questions within the chatbot for a more in-depth understanding.
- ClimateGPT integrates multiple sources (IPCC, IPBES, IEA, Limits to Growth, … ) to cover various aspects of environmental science, such as climate change, biodiversity, energy, economy, and pollution. See all sources used below.

### Limitations

- Currently available in English only.
- ⚠️ Please note that, like any AI, the model may occasionally generate an inaccurate or imprecise answer. Always refer to the provided sources to verify the validity of the information given. If you find any issues with the response, kindly provide feedback to help improve the system.
- ClimateGPT is specifically designed for climate-related inquiries. If you ask a non-environmental question, the chatbot will politely remind you that its focus is on climate and environmental issues.
"""
    )
    with gr.Row():
        with gr.Column(scale=2):
            chatbot = gr.Chatbot(elem_id="chatbot")
            state = gr.State([system_template])

            with gr.Row():
                ask = gr.Textbox(
                    show_label=False,
                    placeholder="Ask here your climate-related question and press enter",
                ).style(container=False)

            examples_questions = gr.Examples([
                "What are the main causes of climate change?",
                "What are the impacts of climate change?",
                "Can climate change be reversed?",
                "What is the difference between climate change and global warming?",
                "What can individuals do to address climate change?",
                "What evidence do we have of climate change?",
                "What is the Paris Agreement and why is it important?",
                "Which industries have the highest GHG emissions?",
                "Is climate change caused by humans?",
                "What are the different greenhouse gases (GHG)?",
                "What is the warming power of methane?",
                "What is the jet stream?",
                "What is the breakdown of carbon sinks?",
                "How do the GHGs work ? Why does temperature increase ?",
                "What is the impact of global warming on ocean currents?",
                "How much warming is possible in 2050?",
                "What is the impact of climate change in Africa?",
                "What is the impact of rising sea levels?",
                "Will climate change accelerate diseases and epidemics like COVID?",
                "What are the economic impacts of climate change?",
                "What is the link between gender equality and climate change?",
                "How much is the cost of inaction ?",
                "What is the relationship between climate change and poverty?",
                "What is the relationship between climate change and biodiversity loss?",
                "What are the most effective strategies and technologies for reducing greenhouse gas (GHG) emissions?",
                "Is economic growth possible? What do you think about degrowth?",
                "Will technology save us?",
                "Is climate change a natural phenomenon ?",
                "Is climate change really happening or is it just a natural fluctuation in Earth's temperature?",
                "Is the scientific consensus on climate change really as strong as it is claimed to be?",
                "Is the impact of climate change really as severe as it is claimed to be?",
                "Is climate change a hoax created by the government or environmental organizations?"
            ],[ask])

        
        with gr.Column(scale=1, variant="panel"):
            gr.Markdown("### Sources")
            sources_textbox = gr.Textbox(
                interactive=False, show_label=False, max_lines=50
            )
    ask.submit(
        fn=chat,
        inputs=[
            user_id_state,
            ask,
            state,
            gr.inputs.Dropdown(
                ["IPCC only", "All available"],
                default="All available",
                label="Select reports",
            ),
        ],
        outputs=[chatbot, state, sources_textbox],
    )
    ask.submit(reset_textbox, [], [ask])

    with gr.Accordion("Submit here your feedbacks and feature requests🙏", open=False):
        gr.Markdown("""
## Beta test

- ClimateGPT welcomes community contributions. To participate, head over to the Community Tab and create a "New Discussion" to ask questions and share your insights.
- Provide feedback through our feedback form, letting us know which insights you found accurate, useful, or not. Your input will help us improve the platform.
- To make climate science accessible to a wider audience, we have opened our own OpenAI API key with a monthly cap of $1000. If you already have an API key, please use it to help conserve bandwidth for others.

## Feedbacks
        """)
        
        feedback = gr.Textbox()
        feedback_save = gr.Button(value="submit feedback")
        # thanks = gr.Textbox()
        feedback_save.click(
            save_feedback,
            inputs=[feedback, user_id_state],  # outputs=[thanks]
        )

    with gr.Accordion("Add your personal openai api key - Optional (see beta-test section below)", open=False):
        openai_api_key_textbox = gr.Textbox(
            placeholder="Paste your OpenAI API key (sk-...) and hit Enter",
            show_label=False,
            lines=1,
            type="password",
        )
    openai_api_key_textbox.change(
        set_openai_api_key, inputs=[openai_api_key_textbox]
    )
    openai_api_key_textbox.submit(
        set_openai_api_key, inputs=[openai_api_key_textbox]
    )

    gr.Markdown("""


## Sources

| IPCC | IPCC AR6 - First Assessment Report on the Physical Science of Climate Change | https://report.ipcc.ch/ar6/wg1/IPCC_AR6_WGI_FullReport.pdf | 2049 pages | August 2021 |
| --- | --- | --- | --- | --- |
| IPCC | IPCC AR6 - Second Assessment Report on Climate Change Adaptation | https://report.ipcc.ch/ar6/wg2/IPCC_AR6_WGII_FullReport.pdf | 3068 pages | February 2022 |
| IPCC | IPCC AR6 - Third Assessment Report on Climate Change Mitigation | https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf | 2258 pages | April 2022 |
| IPCC | IPCC AR6 - Synthesis Report of the IPCC 6th assessment report (AR6) | https://report.ipcc.ch/ar6syr/pdf/IPCC_AR6_SYR_SPM.pdf | 36 pages | March 2023 |
| IPBES | IPBES Global report on Biodiversity - March 2022 | https://www.ipbes.net/global-assessment | 1148 pages | June 2022 |
| FAO | Food Outlook Biannual Report on Global Food Markets | https://www.fao.org/documents/card/en/c/cb9427en | 174 pages | June 2022 |
| IEA | IEA’s report on the Role of Critical Minerals in Clean Energy Transitions | https://www.iea.org/reports/the-role-of-critical-minerals-in-clean-energy-transitions | 287 pages | May 2021 |
| Club de Rome | Limits to Growth | https://www.donellameadows.org/wp-content/userfiles/Limits-to-Growth-digital-scan-version.pdf | 211 pages | 1972 |
|  | Outside The Safe operating system of the Planetary Boundary for Novel Entities | https://pubs.acs.org/doi/10.1021/acs.est.1c04158 | 12 pages | January 2022 |
|  | Planetary boundaries: Guiding human development on a changing planet | https://www.science.org/doi/10.1126/science.1259855 | 11 pages | February 2015 |
| UNFCCC | State of the Oceans report | https://unfccc.int/documents/568128 | 75 pages | August 2022 |
| IEA | Word Energy Outlook 2021 | https://www.iea.org/reports/world-energy-outlook-2021 | 386 pages | October 2021 |
| IEA | Word Energy Outlook 2022 | https://www.iea.org/reports/world-energy-outlook-2022 | 524 pages | October 2022 |
| EU parliament | The environmental impacts of plastics and micro plastics use, waste and polution EU and national measures | https://www.europarl.europa.eu/thinktank/en/document/IPOL_STU(2020)658279 | 76 pages | October 2020 |

## Carbon Footprint

Carbon emissions were measured during the development and inference process using CodeCarbon [https://github.com/mlco2/codecarbon](https://github.com/mlco2/codecarbon)

| Phase | Description | Emissions | Source |
| --- | --- | --- | --- |
| Development  | OCR and parsing all pdf documents with AI | x kgCO2 | CodeCarbon |
| Development | Question Answering development | x kgCO2 | CodeCarbon |
| Inference | Question Answering | x kgCO2 / call | CodeCarbon |
| Inference | API call to turbo-GPT | x kgCO2 / call | OpenAI |

## Authors
- Ekimetrics
""")
    
    demo.queue(concurrency_count=16)

demo.launch()