File size: 32,261 Bytes
a5686cb
ff42e3f
f0fc5f8
71ab0a8
f0fc5f8
 
19a9d09
 
 
91c4196
c48e036
19a9d09
f0fc5f8
91c4196
 
f0fc5f8
 
 
 
 
 
 
 
 
 
 
 
 
ff42e3f
 
 
 
 
 
f0fc5f8
46e3999
 
ff42e3f
46e3999
 
f0fc5f8
7498c33
 
 
 
 
99e2b1f
91c4196
f0fc5f8
 
 
 
 
 
 
 
 
91c4196
871aa55
91c4196
a4595fc
f0fc5f8
 
 
ff42e3f
f0fc5f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff42e3f
 
f0fc5f8
 
 
 
 
 
 
 
 
ff42e3f
 
 
f0fc5f8
 
ff42e3f
 
 
f0fc5f8
 
ff42e3f
 
 
f0fc5f8
ff42e3f
 
 
 
 
 
 
 
f0fc5f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46e3999
a5686cb
91c4196
 
 
 
 
 
 
 
 
 
12574b1
dc1d7e6
 
fdf1622
 
 
 
91c4196
 
 
 
 
12574b1
c36453c
ff42e3f
 
f0fc5f8
 
 
ff42e3f
 
f0fc5f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4857c80
f0fc5f8
4857c80
f0fc5f8
 
4857c80
f0fc5f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12574b1
f0fc5f8
 
 
 
 
 
 
a177bf9
f0fc5f8
ff42e3f
 
 
 
 
 
 
 
 
 
 
 
 
 
78e5850
be5787a
 
 
 
 
 
 
 
 
 
 
 
 
19a9d09
f0fc5f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d271714
 
 
 
 
56102c0
 
dace914
 
 
 
8161832
f655fb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12574b1
 
 
4dd3ec8
d730458
f0fc5f8
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
import gradio as gr
import pandas as pd
import numpy as np
import os
from datetime import datetime

from utils import (
    make_pairs,
    set_openai_api_key,
    create_user_id,
    to_completion,
)

from azure.storage.fileshare import ShareServiceClient

# Langchain
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.schema import AIMessage, HumanMessage
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler

# ClimateQ&A imports
from climateqa.llm import get_llm
from climateqa.chains import load_climateqa_chain
from climateqa.vectorstore import get_pinecone_vectorstore
from climateqa.retriever import ClimateQARetriever
from climateqa.prompts import audience_prompts

# Load environment variables in local mode
try:
    from dotenv import load_dotenv
    load_dotenv()
except:
    pass

# Set up Gradio Theme
theme = gr.themes.Soft(
    primary_hue="sky",
    font=[gr.themes.GoogleFont("Poppins"), "ui-sans-serif", "system-ui", "sans-serif"],
)

init_prompt = ""

system_template = {
    "role": "system",
    "content": init_prompt,
}


# credential = {
#     "account_key": os.environ["account_key"],
#     "account_name": os.environ["account_name"],
# }

# account_url = os.environ["account_url"]
# file_share_name = "climategpt"
# service = ShareServiceClient(account_url=account_url, credential=credential)
# share_client = service.get_share_client(file_share_name)

user_id = create_user_id(10)


#---------------------------------------------------------------------------
# ClimateQ&A core functions
#---------------------------------------------------------------------------

# Create embeddings function and LLM
embeddings_function = HuggingFaceEmbeddings(model_name = "sentence-transformers/multi-qa-mpnet-base-dot-v1")
llm = get_llm(max_tokens = 1024,temperature = 0.0,verbose = True,streaming = False,
    callbacks=[StreamingStdOutCallbackHandler()],            
)

# Create vectorstore and retriever
vectorstore = get_pinecone_vectorstore(embeddings_function)
retriever = ClimateQARetriever(vectorstore=vectorstore,sources = ["IPCC"],k_summary = 3,k_total = 10)
chain = load_climateqa_chain(retriever,llm)


#---------------------------------------------------------------------------
# ClimateQ&A Streaming
# From https://github.com/gradio-app/gradio/issues/5345
#---------------------------------------------------------------------------

# from langchain.callbacks.base import BaseCallbackHandler
# from queue import Queue, Empty
# from threading import Thread
# from collections.abc import Generator

# class QueueCallback(BaseCallbackHandler):
#     """Callback handler for streaming LLM responses to a queue."""

#     def __init__(self, q):
#         self.q = q

#     def on_llm_new_token(self, token: str, **kwargs: any) -> None:
#         self.q.put(token)

#     def on_llm_end(self, *args, **kwargs: any) -> None:
#         return self.q.empty()
    

# def stream(input_text) -> Generator:
#     # Create a Queue
#     q = Queue()
#     job_done = object()

#     llm = get_llm(max_tokens = 1024,temperature = 0.0,verbose = True,streaming = True,
#         callbacks=[QueueCallback(q)],            
#     )

#     chain = load_climateqa_chain(retriever,llm)

#     # Create a funciton to call - this will run in a thread
#     def task():
#         answer = chain({"query":input_text,"audience":"expert climate scientist"})
#         q.put(job_done)

#     # Create a thread and start the function
#     t = Thread(target=task)
#     t.start()

#     content = ""

#     # Get each new token from the queue and yield for our generator
#     while True:
#         try:
#             next_token = q.get(True, timeout=1)
#             if next_token is job_done:
#                 break
#             content += next_token
#             yield next_token, content
#         except Empty:
#             continue


def answer_user(message,history):
    return message, history + [[message, None]]


def answer_bot(message,history):
    print("YO",message,history)
    # history_langchain_format = []
    # for human, ai in history:
    #     history_langchain_format.append(HumanMessage(content=human))
    #     history_langchain_format.append(AIMessage(content=ai))
    # history_langchain_format.append(HumanMessage(content=message)
    # for next_token, content in stream(message):
    #     yield(content)
    output = chain({"query":message,"audience":"expert climate scientist"})
    question = output["question"]
    sources = output["source_documents"]

    if len(sources) > 0:
        sources_text = []
        for i, d in enumerate(sources, 1):
            sources_text.append(make_html_source(d,i))
        sources_text = "\n\n".join([f"Query used for retrieval:\n{question}"] + sources_text)

        history[-1][1] = output["answer"]
        return "",history,sources_text

    else:
        sources_text = "⚠️ No relevant passages found in the climate science reports (IPCC and IPBES)"
        complete_response = "**⚠️ No relevant passages found in the climate science reports (IPCC and IPBES), you may want to ask a more specific question (specifying your question on climate issues).**"
        history[-1][1] = complete_response
        return "",history, sources_text


#---------------------------------------------------------------------------
# ClimateQ&A core functions
#---------------------------------------------------------------------------


def make_html_source(source,i):
    meta = source.metadata
    content = source.page_content.split(":",1)[1].strip()
    return f"""
<div class="card">
    <div class="card-content">
        <h2>Doc {i} - {meta['short_name']} - Page {int(meta['page_number'])}</h2>
        <p>{content}</p>
    </div>
    <div class="card-footer">
        <span>{meta['name']}</span>
        <a href="{meta['url']}#page={int(meta['page_number'])}" target="_blank" class="pdf-link">
            <span role="img" aria-label="Open PDF">🔗</span>
        </a>
    </div>
</div>
"""



# def chat(
#     user_id: str,
#     query: str,
#     history: list = [system_template],
#     report_type: str = "IPCC",
#     threshold: float = 0.555,
# ) -> tuple:
#     """retrieve relevant documents in the document store then query gpt-turbo

#     Args:
#         query (str): user message.
#         history (list, optional): history of the conversation. Defaults to [system_template].
#         report_type (str, optional): should be "All available" or "IPCC only". Defaults to "All available".
#         threshold (float, optional): similarity threshold, don't increase more than 0.568. Defaults to 0.56.

#     Yields:
#         tuple: chat gradio format, chat openai format, sources used.
#     """

#     if report_type not in ["IPCC","IPBES"]: report_type = "all"
#     print("Searching in ",report_type," reports")
#     # if report_type == "All available":
#     #     retriever = retrieve_all
#     # elif report_type == "IPCC only":
#     #     retriever = retrieve_giec
#     # else:
#     #     raise Exception("report_type arg should be in (All available, IPCC only)")

#     reformulated_query = openai.Completion.create(
#         engine="EkiGPT",
#         prompt=get_reformulation_prompt(query),
#         temperature=0,
#         max_tokens=128,
#         stop=["\n---\n", "<|im_end|>"],
#     )
#     reformulated_query = reformulated_query["choices"][0]["text"]
#     reformulated_query, language = reformulated_query.split("\n")
#     language = language.split(":")[1].strip()


#     sources = retrieve_with_summaries(reformulated_query,retriever,k_total = 10,k_summary = 3,as_dict = True,source = report_type.lower(),threshold = threshold)
#     response_retriever = {
#       "language":language,
#       "reformulated_query":reformulated_query,
#       "query":query,
#       "sources":sources,
#     }

#     # docs = [d for d in retriever.retrieve(query=reformulated_query, top_k=10) if d.score > threshold]
#     messages = history + [{"role": "user", "content": query}]

#     if len(sources) > 0:
#         docs_string = []
#         docs_html = []
#         for i, d in enumerate(sources, 1):
#             docs_string.append(f"📃 Doc {i}: {d['meta']['short_name']} page {d['meta']['page_number']}\n{d['content']}")
#             docs_html.append(make_html_source(d,i))
#         docs_string = "\n\n".join([f"Query used for retrieval:\n{reformulated_query}"] + docs_string)
#         docs_html = "\n\n".join([f"Query used for retrieval:\n{reformulated_query}"] + docs_html)
#         messages.append({"role": "system", "content": f"{sources_prompt}\n\n{docs_string}\n\nAnswer in {language}:"})


#         response = openai.Completion.create(
#             engine="EkiGPT",
#             prompt=to_completion(messages),
#             temperature=0,  # deterministic
#             stream=True,
#             max_tokens=1024,
#         )

#         complete_response = ""
#         messages.pop()

#         messages.append({"role": "assistant", "content": complete_response})
#         timestamp = str(datetime.now().timestamp())
#         file = user_id[0] + timestamp + ".json"
#         logs = {
#             "user_id": user_id[0],
#             "prompt": query,
#             "retrived": sources,
#             "report_type": report_type,
#             "prompt_eng": messages[0],
#             "answer": messages[-1]["content"],
#             "time": timestamp,
#         }
#         log_on_azure(file, logs, share_client)

#         for chunk in response:
#             if (chunk_message := chunk["choices"][0].get("text")) and chunk_message != "<|im_end|>":
#                 complete_response += chunk_message
#                 messages[-1]["content"] = complete_response
#                 gradio_format = make_pairs([a["content"] for a in messages[1:]])
#                 yield gradio_format, messages, docs_html

#     else:
#         docs_string = "⚠️ No relevant passages found in the climate science reports (IPCC and IPBES)"
#         complete_response = "**⚠️ No relevant passages found in the climate science reports (IPCC and IPBES), you may want to ask a more specific question (specifying your question on climate issues).**"
#         messages.append({"role": "assistant", "content": complete_response})
#         gradio_format = make_pairs([a["content"] for a in messages[1:]])
#         yield gradio_format, messages, docs_string


def save_feedback(feed: str, user_id):
    if len(feed) > 1:
        timestamp = str(datetime.now().timestamp())
        file = user_id[0] + timestamp + ".json"
        logs = {
            "user_id": user_id[0],
            "feedback": feed,
            "time": timestamp,
        }
        log_on_azure(file, logs, share_client)
        return "Feedback submitted, thank you!"


def reset_textbox():
    return gr.update(value="")


def log_on_azure(file, logs, share_client):
    file_client = share_client.get_file_client(file)
    file_client.upload_file(str(logs))






# --------------------------------------------------------------------
# Gradio
# --------------------------------------------------------------------





with gr.Blocks(title="🌍 Climate Q&A", css="style.css", theme=theme) as demo:
    # user_id_state = gr.State([user_id])

    # Gradio
    gr.Markdown("<h1><center>Climate Q&A 🌍</center></h1>")
    gr.Markdown("<h4><center>Ask climate-related questions to the IPCC and IPBES reports using AI</center></h4>")

    with gr.Tab("💬 Chatbot"):

        with gr.Row():
            with gr.Column(scale=2):
                # state = gr.State([system_template])
                bot = gr.Chatbot(height=400)

                with gr.Row():
                    with gr.Column(scale = 7):
                        textbox=gr.Textbox(placeholder="Ask me a question about climate change or biodiversity in any language, and press Enter",show_label=False)
                    with gr.Column(scale = 1):
                        submit_button = gr.Button("Submit")
                
                examples_hidden = gr.Textbox(elem_id="hidden-message")

                examples_questions = gr.Examples(
                    [
                        "Is climate change caused by humans?",
                        "What evidence do we have of climate change?",
                        "What are the impacts of climate change?",
                        "Can climate change be reversed?",
                        "What is the difference between climate change and global warming?",
                        "What can individuals do to address climate change?",
                        "What are the main causes of climate change?",
                        "What is the Paris Agreement and why is it important?",
                        "Which industries have the highest GHG emissions?",
                        "Is climate change a hoax created by the government or environmental organizations?",
                        "What is the relationship between climate change and biodiversity loss?",
                        "What is the link between gender equality and climate change?",
                        "Is the impact of climate change really as severe as it is claimed to be?",
                        "What is the impact of rising sea levels?",
                        "What are the different greenhouse gases (GHG)?",
                        "What is the warming power of methane?",
                        "What is the jet stream?",
                        "What is the breakdown of carbon sinks?",
                        "How do the GHGs work ? Why does temperature increase ?",
                        "What is the impact of global warming on ocean currents?",
                        "How much warming is possible in 2050?",
                        "What is the impact of climate change in Africa?",
                        "Will climate change accelerate diseases and epidemics like COVID?",
                        "What are the economic impacts of climate change?",
                        "How much is the cost of inaction ?",
                        "What is the relationship between climate change and poverty?",
                        "What are the most effective strategies and technologies for reducing greenhouse gas (GHG) emissions?",
                        "Is economic growth possible? What do you think about degrowth?",
                        "Will technology save us?",
                        "Is climate change a natural phenomenon ?",
                        "Is climate change really happening or is it just a natural fluctuation in Earth's temperature?",
                        "Is the scientific consensus on climate change really as strong as it is claimed to be?",
                    ],
                    [examples_hidden],
                    examples_per_page=10,
                )

            with gr.Column(scale=1, variant="panel"):

                dropdown_sources = gr.CheckboxGroup(
                    ["IPCC", "IPBES"],
                    label="Select reports",
                    value = ["IPCC"],
                )

                dropdown_audience = gr.Dropdown(
                    ["Children","Adult","Experts"],
                    label="Select audience",
                    value="Experts",
                )

                gr.Markdown("### Sources")
                sources_textbox = gr.Markdown(show_label=False)

            # textbox.submit(predict_climateqa,[textbox,bot],[None,bot,sources_textbox])

            textbox.submit(answer_user, [textbox, bot], [textbox, bot], queue=False).then(
                    answer_bot, [textbox,bot], [textbox,bot,sources_textbox]
                )
            examples_hidden.change(answer_user, [examples_hidden, bot], [textbox, bot], queue=False).then(
                    answer_bot, [textbox,bot], [textbox,bot,sources_textbox]
                )
        
            submit_button.click(answer_user, [textbox, bot], [textbox, bot], queue=False).then(
                    answer_bot, [textbox,bot], [textbox,bot,sources_textbox]
                )














#---------------------------------------------------------------------------------------
# OTHER TABS
#---------------------------------------------------------------------------------------


    with gr.Tab("ℹ️ About ClimateQ&A"):
        with gr.Row():
            with gr.Column(scale=1):
                gr.Markdown(
                    """
    <p><b>Climate change and environmental disruptions have become some of the most pressing challenges facing our planet today</b>. As global temperatures rise and ecosystems suffer, it is essential for individuals to understand the gravity of the situation in order to make informed decisions and advocate for appropriate policy changes.</p>
    <p>However, comprehending the vast and complex scientific information can be daunting, as the scientific consensus references, such as <b>the Intergovernmental Panel on Climate Change (IPCC) reports, span thousands of pages</b>. To bridge this gap and make climate science more accessible, we introduce <b>ClimateQ&A as a tool to distill expert-level knowledge into easily digestible insights about climate science.</b></p>
    <div class="tip-box">
    <div class="tip-box-title">
        <span class="light-bulb" role="img" aria-label="Light Bulb">💡</span>
        How does ClimateQ&A work?
    </div>
    ClimateQ&A harnesses modern OCR techniques to parse and preprocess IPCC reports. By leveraging state-of-the-art question-answering algorithms, <i>ClimateQ&A is able to sift through the extensive collection of climate scientific reports and identify relevant passages in response to user inquiries</i>. Furthermore, the integration of the ChatGPT API allows ClimateQ&A to present complex data in a user-friendly manner, summarizing key points and facilitating communication of climate science to a wider audience.
    </div>

    <div class="warning-box">
    Version 0.2-beta - This tool is under active development
    </div>


    """
                )

            with gr.Column(scale=1):
                gr.Markdown("![](https://i.postimg.cc/fLvsvMzM/Untitled-design-5.png)")
                gr.Markdown("*Source : IPCC AR6 - Synthesis Report of the IPCC 6th assessment report (AR6)*")

        gr.Markdown("## How to use ClimateQ&A")
        with gr.Row():
            with gr.Column(scale=1):
                gr.Markdown(
                    """
        ### 💪 Getting started
        - In the chatbot section, simply type your climate-related question, and ClimateQ&A will provide an answer with references to relevant IPCC reports.
            - ClimateQ&A retrieves specific passages from the IPCC reports to help answer your question accurately.
            - Source information, including page numbers and passages, is displayed on the right side of the screen for easy verification.
            - Feel free to ask follow-up questions within the chatbot for a more in-depth understanding.
            - You can ask question in any language, ClimateQ&A is multi-lingual !
        - ClimateQ&A integrates multiple sources (IPCC and IPBES, … ) to cover various aspects of environmental science, such as climate change and biodiversity. See all sources used below.
        """
                )
            with gr.Column(scale=1):
                gr.Markdown(
                    """
        ### ⚠️ Limitations
        <div class="warning-box">
        <ul>
            <li>Please note that, like any AI, the model may occasionally generate an inaccurate or imprecise answer. Always refer to the provided sources to verify the validity of the information given. If you find any issues with the response, kindly provide feedback to help improve the system.</li>
            <li>ClimateQ&A is specifically designed for climate-related inquiries. If you ask a non-environmental question, the chatbot will politely remind you that its focus is on climate and environmental issues.</li>
        </div>
        """
                )


    with gr.Tab("📧 Contact, feedback and feature requests"):
        gr.Markdown(
            """

        🤞 For any question or press request, contact Théo Alves Da Costa at <b>theo.alvesdacosta@ekimetrics.com</b>

        - ClimateQ&A welcomes community contributions. To participate, head over to the Community Tab and create a "New Discussion" to ask questions and share your insights.
        - Provide feedback through email, letting us know which insights you found accurate, useful, or not. Your input will help us improve the platform.
        - Only a few sources (see below) are integrated (all IPCC, IPBES), if you are a climate science researcher and net to sift through another report, please let us know.
        
        *This tool has been developed by the R&D lab at **Ekimetrics** (Jean Lelong, Nina Achache, Gabriel Olympie, Nicolas Chesneau, Natalia De la Calzada, Théo Alves Da Costa)*
        """
        )
    # with gr.Row():
    #     with gr.Column(scale=1):
    #         gr.Markdown("### Feedbacks")
    #         feedback = gr.Textbox(label="Write your feedback here")
    #         feedback_output = gr.Textbox(label="Submit status")
    #         feedback_save = gr.Button(value="submit feedback")
    #         feedback_save.click(
    #             save_feedback,
    #             inputs=[feedback, user_id_state],
    #             outputs=feedback_output,
    #         )
    #         gr.Markdown(
    #             "If you need us to ask another climate science report or ask any question, contact us at <b>theo.alvesdacosta@ekimetrics.com</b>"
    #         )

    #     with gr.Column(scale=1):
    #         gr.Markdown("### OpenAI API")
    #         gr.Markdown(
    #             "To make climate science accessible to a wider audience, we have opened our own OpenAI API key with a monthly cap of $1000. If you already have an API key, please use it to help conserve bandwidth for others."
    #         )
    #         openai_api_key_textbox = gr.Textbox(
    #             placeholder="Paste your OpenAI API key (sk-...) and hit Enter",
    #             show_label=False,
    #             lines=1,
    #             type="password",
    #         )
    # openai_api_key_textbox.change(set_openai_api_key, inputs=[openai_api_key_textbox])
    # openai_api_key_textbox.submit(set_openai_api_key, inputs=[openai_api_key_textbox])

    with gr.Tab("📚 Sources"):
        gr.Markdown("""
    | Source | Report | URL | Number of pages | Release date |
    | --- | --- | --- | --- | --- |
    IPCC | Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of the WGI to the AR6 of the IPCC. | https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM.pdf | 32 | 2021
    IPCC | Full Report. In: Climate Change 2021: The Physical Science Basis. Contribution of the WGI to the AR6 of the IPCC. | https://report.ipcc.ch/ar6/wg1/IPCC_AR6_WGI_FullReport.pdf | 2409 | 2021
    IPCC | Technical Summary. In: Climate Change 2021: The Physical Science Basis. Contribution of the WGI to the AR6 of the IPCC. | https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_TS.pdf | 112 | 2021
    IPCC | Summary for Policymakers. In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of the WGII to the AR6 of the IPCC. | https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_SummaryForPolicymakers.pdf | 34 | 2022
    IPCC | Technical Summary. In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of the WGII to the AR6 of the IPCC. | https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_TechnicalSummary.pdf | 84 | 2022
    IPCC | Full Report. In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of the WGII to the AR6 of the IPCC. | https://report.ipcc.ch/ar6/wg2/IPCC_AR6_WGII_FullReport.pdf | 3068 | 2022
    IPCC | Summary for Policymakers. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC. | https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_SummaryForPolicymakers.pdf | 50 | 2022
    IPCC | Technical Summary. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC. | https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_TechnicalSummary.pdf | 102 | 2022
    IPCC | Full Report. In: Climate Change 2022: Mitigation of Climate Change. Contribution of the WGIII to the AR6 of the IPCC. | https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_FullReport.pdf | 2258 | 2022
    IPCC | Summary for Policymakers. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. | https://www.ipcc.ch/site/assets/uploads/sites/2/2022/06/SPM_version_report_LR.pdf | 24 | 2018
    IPCC | Summary for Policymakers. In: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. | https://www.ipcc.ch/site/assets/uploads/sites/4/2022/11/SRCCL_SPM.pdf | 36 | 2019
    IPCC | Summary for Policymakers. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. | https://www.ipcc.ch/site/assets/uploads/sites/3/2022/03/01_SROCC_SPM_FINAL.pdf | 36 | 2019
    IPCC | Technical Summary. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. | https://www.ipcc.ch/site/assets/uploads/sites/3/2022/03/02_SROCC_TS_FINAL.pdf | 34 | 2019
    IPCC | Chapter 1 - Framing and Context of the Report. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. | https://www.ipcc.ch/site/assets/uploads/sites/3/2022/03/03_SROCC_Ch01_FINAL.pdf | 60 | 2019
    IPCC | Chapter 2 - High Mountain Areas. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. | https://www.ipcc.ch/site/assets/uploads/sites/3/2022/03/04_SROCC_Ch02_FINAL.pdf | 72 | 2019
    IPCC | Chapter 3 - Polar Regions. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. | https://www.ipcc.ch/site/assets/uploads/sites/3/2022/03/05_SROCC_Ch03_FINAL.pdf | 118 | 2019
    IPCC | Chapter 4 - Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. | https://www.ipcc.ch/site/assets/uploads/sites/3/2022/03/06_SROCC_Ch04_FINAL.pdf | 126 | 2019
    IPCC | Chapter 5 -  Changing Ocean, Marine Ecosystems, and Dependent Communities. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. | https://www.ipcc.ch/site/assets/uploads/sites/3/2022/03/07_SROCC_Ch05_FINAL.pdf | 142 | 2019
    IPCC | Chapter 6 - Extremes, Abrupt Changes and Managing Risk. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. | https://www.ipcc.ch/site/assets/uploads/sites/3/2022/03/08_SROCC_Ch06_FINAL.pdf | 68 | 2019
    IPCC | Cross-Chapter Box 9: Integrative Cross-Chapter Box on Low-Lying Islands and Coasts. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. | https://www.ipcc.ch/site/assets/uploads/sites/3/2019/11/11_SROCC_CCB9-LLIC_FINAL.pdf | 18 | 2019
    IPCC | Annex I: Glossary [Weyer, N.M. (ed.)]. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. | https://www.ipcc.ch/site/assets/uploads/sites/3/2022/03/10_SROCC_AnnexI-Glossary_FINAL.pdf | 28 | 2019
    IPBES | Full Report. Global assessment report on biodiversity and ecosystem services of the IPBES. | https://zenodo.org/record/6417333/files/202206_IPBES%20GLOBAL%20REPORT_FULL_DIGITAL_MARCH%202022.pdf | 1148 | 2019
    IPBES | Summary for Policymakers. Global assessment report on biodiversity and ecosystem services of the IPBES (Version 1). | https://zenodo.org/record/3553579/files/ipbes_global_assessment_report_summary_for_policymakers.pdf | 60 | 2019
    IPBES | Full Report. Thematic assessment of the sustainable use of wild species of the IPBES. | https://zenodo.org/record/7755805/files/IPBES_ASSESSMENT_SUWS_FULL_REPORT.pdf | 1008 | 2022
    IPBES | Summary for Policymakers. Summary for policymakers of the thematic assessment of the sustainable use of wild species of the IPBES. | https://zenodo.org/record/7411847/files/EN_SPM_SUSTAINABLE%20USE%20OF%20WILD%20SPECIES.pdf | 44 | 2022
    IPBES | Full Report. Regional Assessment Report on Biodiversity and Ecosystem Services for Africa. | https://zenodo.org/record/3236178/files/ipbes_assessment_report_africa_EN.pdf | 494 | 2018
    IPBES | Summary for Policymakers. Regional Assessment Report on Biodiversity and Ecosystem Services for Africa. | https://zenodo.org/record/3236189/files/ipbes_assessment_spm_africa_EN.pdf | 52 | 2018
    IPBES | Full Report. Regional Assessment Report on Biodiversity and Ecosystem Services for the Americas. | https://zenodo.org/record/3236253/files/ipbes_assessment_report_americas_EN.pdf | 660 | 2018
    IPBES | Summary for Policymakers. Regional Assessment Report on Biodiversity and Ecosystem Services for the Americas. | https://zenodo.org/record/3236292/files/ipbes_assessment_spm_americas_EN.pdf | 44 | 2018
    IPBES | Full Report. Regional Assessment Report on Biodiversity and Ecosystem Services for Asia and the Pacific. | https://zenodo.org/record/3237374/files/ipbes_assessment_report_ap_EN.pdf | 616 | 2018
    IPBES | Summary for Policymakers. Regional Assessment Report on Biodiversity and Ecosystem Services for Asia and the Pacific. | https://zenodo.org/record/3237383/files/ipbes_assessment_spm_ap_EN.pdf | 44 | 2018
    IPBES | Full Report. Regional Assessment Report on Biodiversity and Ecosystem Services for Europe and Central Asia. | https://zenodo.org/record/3237429/files/ipbes_assessment_report_eca_EN.pdf | 894 | 2018
    IPBES | Summary for Policymakers. Regional Assessment Report on Biodiversity and Ecosystem Services for Europe and Central Asia. | https://zenodo.org/record/3237468/files/ipbes_assessment_spm_eca_EN.pdf | 52 | 2018
    IPBES | Full Report. Assessment Report on Land Degradation and Restoration. | https://zenodo.org/record/3237393/files/ipbes_assessment_report_ldra_EN.pdf | 748 | 2018
    IPBES | Summary for Policymakers. Assessment Report on Land Degradation and Restoration. | https://zenodo.org/record/3237393/files/ipbes_assessment_report_ldra_EN.pdf | 48 | 2018
""")

    with gr.Tab("🛢️ Carbon Footprint"):
        gr.Markdown("""

Carbon emissions were measured during the development and inference process using CodeCarbon [https://github.com/mlco2/codecarbon](https://github.com/mlco2/codecarbon)

| Phase | Description | Emissions | Source |
| --- | --- | --- | --- |
| Development  | OCR and parsing all pdf documents with AI | 28gCO2e | CodeCarbon |
| Development | Question Answering development | 114gCO2e | CodeCarbon |
| Inference | Question Answering | ~0.102gCO2e / call | CodeCarbon |
| Inference | API call to turbo-GPT | ~0.38gCO2e / call | https://medium.com/@chrispointon/the-carbon-footprint-of-chatgpt-e1bc14e4cc2a |

Carbon Emissions are **relatively low but not negligible** compared to other usages: one question asked to ClimateQ&A is around 0.482gCO2e - equivalent to 2.2m by car (https://datagir.ademe.fr/apps/impact-co2/)  
Or around 2 to 4 times more than a typical Google search. 
"""
    )
        
    with gr.Tab("🪄 Changelog"):
        gr.Markdown("""

##### v1.1.0 - *2023-10-16*
- Hugging Face version is finally up to date
- Switched all python code to langchain codebase for cleaner code, easier maintenance and future features
- Updated GPT model to August version
                    
##### v1.0.0 - *2023-05-11*
- First version of clean interface on https://climateqa.com
- Add children mode on https://climateqa.com
- Add follow-up questions https://climateqa.com
"""
    )

    demo.queue(concurrency_count=16)

if __name__ == "__main__":
    demo.launch()