File size: 1,794 Bytes
139fefe
 
 
 
4b4bf28
 
bcc8503
139fefe
 
 
 
 
 
 
 
 
bcc8503
 
 
 
 
 
139fefe
4b4bf28
 
 
 
 
 
 
 
 
 
139fefe
4b4bf28
bcc8503
38ed905
4b4bf28
 
 
139fefe
 
 
4b4bf28
139fefe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
# Pinecone
# More info at https://docs.pinecone.io/docs/langchain
# And https://python.langchain.com/docs/integrations/vectorstores/pinecone
import os
from pinecone import Pinecone
from langchain_community.vectorstores import Pinecone as PineconeVectorstore
from langchain_chroma import Chroma

# LOAD ENVIRONMENT VARIABLES
try:
    from dotenv import load_dotenv
    load_dotenv()
except:
    pass


def get_chroma_vectorstore(embedding_function, persist_directory="/home/dora/climate-question-answering/data/vectorstore"):
    vectorstore = Chroma(persist_directory=persist_directory, embedding_function=embedding_function)
    return vectorstore


def get_pinecone_vectorstore(embeddings,text_key = "content", index_name = os.getenv("PINECONE_API_INDEX")):

    # # initialize pinecone
    # pinecone.init(
    #     api_key=os.getenv("PINECONE_API_KEY"),  # find at app.pinecone.io
    #     environment=os.getenv("PINECONE_API_ENVIRONMENT"),  # next to api key in console
    # )

    # index_name = os.getenv("PINECONE_API_INDEX")
    # vectorstore = Pinecone.from_existing_index(index_name, embeddings,text_key = text_key)

    # return vectorstore

    pc = Pinecone(api_key=os.getenv("PINECONE_API_KEY"))
    index = pc.Index(index_name)

    vectorstore = PineconeVectorstore(
        index, embeddings, text_key,
    )
    return vectorstore



# def get_pinecone_retriever(vectorstore,k = 10,namespace = "vectors",sources = ["IPBES","IPCC"]):

#     assert isinstance(sources,list)

#     # Check if all elements in the list are either IPCC or IPBES
#     filter = {
#         "source": { "$in":sources},
#     }

#     retriever = vectorstore.as_retriever(search_kwargs={
#         "k": k,
#         "namespace":"vectors",
#         "filter":filter
#     })

#     return retriever