File size: 5,905 Bytes
48e003d d14568c 48e003d d14568c 48e003d c3b815e d14568c d5c9c65 14a5a97 d14568c 48e003d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import re
def make_pairs(lst):
"""from a list of even lenght, make tupple pairs"""
return [(lst[i], lst[i + 1]) for i in range(0, len(lst), 2)]
def serialize_docs(docs):
new_docs = []
for doc in docs:
new_doc = {}
new_doc["page_content"] = doc.page_content
new_doc["metadata"] = doc.metadata
new_docs.append(new_doc)
return new_docs
def parse_output_llm_with_sources(output):
# Split the content into a list of text and "[Doc X]" references
content_parts = re.split(r'\[(Doc\s?\d+(?:,\s?Doc\s?\d+)*)\]', output)
parts = []
for part in content_parts:
if part.startswith("Doc"):
subparts = part.split(",")
subparts = [subpart.lower().replace("doc","").strip() for subpart in subparts]
subparts = [f"""<a href="#doc{subpart}" class="a-doc-ref" target="_self"><span class='doc-ref'><sup>{subpart}</sup></span></a>""" for subpart in subparts]
parts.append("".join(subparts))
else:
parts.append(part)
content_parts = "".join(parts)
return content_parts
def make_html_source(source,i):
meta = source.metadata
# content = source.page_content.split(":",1)[1].strip()
content = source.page_content.strip()
toc_levels = []
for j in range(2):
level = meta[f"toc_level{j}"]
if level != "N/A":
toc_levels.append(level)
else:
break
toc_levels = " > ".join(toc_levels)
if len(toc_levels) > 0:
name = f"<b>{toc_levels}</b><br/>{meta['name']}"
else:
name = meta['name']
score = meta['reranking_score']
if score > 0.8:
color = "score-green"
elif score > 0.5:
color = "score-orange"
else:
color = "score-red"
relevancy_score = f"<p class=relevancy-score>Relevancy score: <span class='{color}'>{score:.1%}</span></p>"
if meta["chunk_type"] == "text":
card = f"""
<div class="card" id="doc{i}">
<div class="card-content">
<h2>Doc {i} - {meta['short_name']} - Page {int(meta['page_number'])}</h2>
<p>{content}</p>
{relevancy_score}
</div>
<div class="card-footer">
<span>{name}</span>
<a href="{meta['url']}#page={int(meta['page_number'])}" target="_blank" class="pdf-link">
<span role="img" aria-label="Open PDF">π</span>
</a>
</div>
</div>
"""
else:
if meta["figure_code"] != "N/A":
title = f"{meta['figure_code']} - {meta['short_name']}"
else:
title = f"{meta['short_name']}"
card = f"""
<div class="card card-image">
<div class="card-content">
<h2>Image {i} - {title} - Page {int(meta['page_number'])}</h2>
<p class='ai-generated'>AI-generated description</p>
<p>{content}</p>
{relevancy_score}
</div>
<div class="card-footer">
<span>{name}</span>
<a href="{meta['url']}#page={int(meta['page_number'])}" target="_blank" class="pdf-link">
<span role="img" aria-label="Open PDF">π</span>
</a>
</div>
</div>
"""
return card
def make_html_df(df,i):
title = df['title'][i]
content = df['abstract'][i]
url = df['doi'][i]
publication_date = df['publication_year'][i]
card = f"""
<div class="card" id="doc{i}">
<div class="card-content">
<h2>Doc {i+1} - {title}</h2>
<p>{content}</p>
</div>
<div class="card-footer">
<span>{publication_date}</span>
<a href="{url}" target="_blank" class="pdf-link">
</div>
</div>
"""
return card
def make_html_figure_sources(source,i,img_str):
meta = source.metadata
content = source.page_content.strip()
score = meta['reranking_score']
if score > 0.8:
color = "score-green"
elif score > 0.5:
color = "score-orange"
else:
color = "score-red"
toc_levels = []
if len(toc_levels) > 0:
name = f"<b>{toc_levels}</b><br/>{meta['name']}"
else:
name = meta['name']
relevancy_score = f"<p class=relevancy-score>Relevancy score: <span class='{color}'>{score:.1%}</span></p>"
if meta["figure_code"] != "N/A":
title = f"{meta['figure_code']} - {meta['short_name']}"
else:
title = f"{meta['short_name']}"
card = f"""
<div class="card card-image">
<div class="card-content">
<h2>Image {i} - {title} - Page {int(meta['page_number'])}</h2>
<img src="data:image/png;base64, { img_str }" alt="Alt text" />
<p class='ai-generated'>AI-generated description</p>
<p>{content}</p>
{relevancy_score}
</div>
<div class="card-footer">
<span>{name}</span>
<a href="{meta['url']}#page={int(meta['page_number'])}" target="_blank" class="pdf-link">
<span role="img" aria-label="Open PDF">π</span>
</a>
</div>
</div>
"""
return card
def make_toolbox(tool_name,description = "",checked = False,elem_id = "toggle"):
if checked:
span = "<span class='checkmark'>✓</span>"
else:
span = "<span class='loader'></span>"
# toolbox = f"""
# <div class="dropdown">
# <label for="{elem_id}" class="dropdown-toggle">
# {span}
# {tool_name}
# <span class="caret"></span>
# </label>
# <input type="checkbox" id="{elem_id}" hidden/>
# <div class="dropdown-content">
# <p>{description}</p>
# </div>
# </div>
# """
toolbox = f"""
<div class="dropdown">
<label for="{elem_id}" class="dropdown-toggle">
{span}
{tool_name}
</label>
</div>
"""
return toolbox
|