File size: 1,200 Bytes
f0fc5f8 fa9f031 f0fc5f8 fa9f031 f0fc5f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
# Pinecone
# More info at https://docs.pinecone.io/docs/langchain
# And https://python.langchain.com/docs/integrations/vectorstores/pinecone
import os
import pinecone
from langchain.vectorstores import Pinecone
# LOAD ENVIRONMENT VARIABLES
try:
from dotenv import load_dotenv
load_dotenv()
except:
pass
def get_pinecone_vectorstore(embeddings,text_key = "content"):
# initialize pinecone
pinecone.init(
api_key=os.getenv("PINECONE_API_KEY"), # find at app.pinecone.io
environment=os.getenv("PINECONE_API_ENVIRONMENT"), # next to api key in console
)
index_name = os.getenv("PINECONE_API_INDEX")
vectorstore = Pinecone.from_existing_index(index_name, embeddings,text_key = text_key)
return vectorstore
# def get_pinecone_retriever(vectorstore,k = 10,namespace = "vectors",sources = ["IPBES","IPCC"]):
# assert isinstance(sources,list)
# # Check if all elements in the list are either IPCC or IPBES
# filter = {
# "source": { "$in":sources},
# }
# retriever = vectorstore.as_retriever(search_kwargs={
# "k": k,
# "namespace":"vectors",
# "filter":filter
# })
# return retriever |