File size: 9,290 Bytes
a5686cb a4595fc a5686cb 71ab0a8 19a9d09 91c4196 c48e036 19a9d09 91c4196 fa7f0c5 669d503 99e2b1f c48e036 99e2b1f fdf1622 99e2b1f a4595fc 91c4196 99e2b1f fdf1622 669d503 a4595fc 91c4196 a4595fc 0b4f4a2 91c4196 c48e036 0b4f4a2 9f6c9bd 99e2b1f f3d1657 a4595fc c48e036 bf93486 c48e036 68fbb90 f2033dd 68fbb90 121f27f c48e036 121f27f c48e036 121f27f 91c4196 fdf1622 c48e036 a422880 121f27f a422880 a5686cb 91c4196 dc1d7e6 fdf1622 91c4196 bf93486 f3d1657 91c4196 19a9d09 af9539a dc1d7e6 af9539a c1646ce 97ba4cb 121f27f 82532b2 19a9d09 af9539a a422880 af9539a c48e036 af9539a fdf1622 af9539a 91c4196 af9539a a4595fc af9539a fdf1622 19a9d09 dc1d7e6 91c4196 19a9d09 af9539a c48e036 a5686cb af9539a 19a9d09 4dd3ec8 d730458 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import gradio as gr
from haystack.document_stores import FAISSDocumentStore
from haystack.nodes import EmbeddingRetriever
import openai
import os
from utils import (
make_pairs,
set_openai_api_key,
create_user_id,
to_completion,
)
import numpy as np
from datetime import datetime
from azure.storage.fileshare import ShareServiceClient
system_template = {"role": "system", "content": os.environ["content"]}
openai.api_type = "azure"
openai.api_key = os.environ["api_key"]
openai.api_base = os.environ["ressource_endpoint"]
openai.api_version = "2022-12-01"
retrieve_all = EmbeddingRetriever(
document_store=FAISSDocumentStore.load(
index_path="./documents/climate_gpt.faiss",
config_path="./documents/climate_gpt.json",
),
embedding_model="sentence-transformers/multi-qa-mpnet-base-dot-v1",
model_format="sentence_transformers",
)
retrieve_giec = EmbeddingRetriever(
document_store=FAISSDocumentStore.load(
index_path="./documents/climate_gpt_only_giec.faiss",
config_path="./documents/climate_gpt_only_giec.json",
),
embedding_model="sentence-transformers/multi-qa-mpnet-base-dot-v1",
model_format="sentence_transformers",
)
credential = {
"account_key": os.environ["account_key"],
"account_name": os.environ["account_name"],
}
account_url = os.environ["account_url"]
file_share_name = "climategpt"
service = ShareServiceClient(account_url=account_url, credential=credential)
share_client = service.get_share_client(file_share_name)
def chat(
user_id: str,
query: str,
history: list = [system_template],
report_type: str = "All available",
threshold: float = 0.555,
) -> tuple:
"""retrieve relevant documents in the document store then query gpt-turbo
Args:
query (str): user message.
history (list, optional): history of the conversation. Defaults to [system_template].
report_type (str, optional): should be "All available" or "IPCC only". Defaults to "All available".
threshold (float, optional): similarity threshold, don't increase more than 0.568. Defaults to 0.56.
Yields:
tuple: chat gradio format, chat openai format, sources used.
"""
if report_type == "All available":
retriever = retrieve_all
elif report_type == "IPCC only":
retriever = retrieve_giec
else:
raise Exception("report_type arg should be in (All available, IPCC only)")
docs = retriever.retrieve(query=query, top_k=10)
messages = history + [{"role": "user", "content": query}]
sources = "\n\n".join(
f"doc {i}: {d.meta['file_name']} page {d.meta['page_number']}\n{d.content}"
for i, d in enumerate(docs, 1)
if d.score > threshold
)
if sources:
messages.append({"role": "system", "content": f"{os.environ['sources']}\n\n{sources}"})
response = openai.Completion.create(
engine="climateGPT",
# messages=messages,
prompt=to_completion(messages),
temperature=0.2,
stream=True,
max_tokens=1024,
)
if sources:
complete_response = ""
messages.pop()
else:
sources = "No environmental report was used to provide this answer."
complete_response = (
"No relevant documents found, for a sourced answer you may want to try a more specific question.\n\n"
)
messages.append({"role": "assistant", "content": complete_response})
timestamp = str(datetime.now().timestamp())
file = user_id[0] + timestamp + ".json"
logs = {
"user_id": user_id[0],
"prompt": query,
"retrived": sources,
"report_type": report_type,
"prompt_eng": messages[0],
"answer": messages[-1]["content"],
"time": timestamp,
}
log_on_azure(file, logs, share_client)
for chunk in response:
# if chunk_message := chunk["choices"][0]["delta"].get("content"):
if (chunk_message := chunk["choices"][0].get("text")) and chunk_message != "<|im_end|>":
complete_response += chunk_message
messages[-1]["content"] = complete_response
gradio_format = make_pairs([a["content"] for a in messages[1:]])
yield gradio_format, messages, sources
def save_feedback(feed: str, user_id):
if len(feed) > 1:
timestamp = str(datetime.now().timestamp())
file = user_id[0] + timestamp + ".json"
logs = {
"user_id": user_id[0],
"feedback": feed,
"time": timestamp,
}
log_on_azure(file, logs, share_client)
return "Thanks for your feedbacks"
def reset_textbox():
return gr.update(value="")
def log_on_azure(file, logs, share_client):
file_client = share_client.get_file_client(file)
file_client.upload_file(str(logs))
# Gradio
css_code = ".gradio-container {background-image: url('file=background.png');background-position: top right}"
with gr.Blocks(title="π ClimateGPT Ekimetrics", css=css_code) as demo:
user_id = create_user_id(10)
user_id_state = gr.State([user_id])
with gr.Tab("App"):
gr.Markdown("# Welcome to Climate GPT π !")
gr.Markdown(
""" Climate GPT is an interactive exploration tool designed to help you easily find relevant information based on of Environmental reports such as IPCCs and other environmental reports.
\n **How does it work:** when a user sends a message, the system retrieves the most relevant paragraphs from scientific reports that are semantically related to the user's question. These paragraphs are then used to generate a comprehensive and well-sourced answer using a language model.
\n **Usage guideline:** more sources will be retrieved using precise questions.
\n β οΈ Always refer to the source to ensure the validity of the information communicated.
"""
)
with gr.Row():
with gr.Column(scale=2):
chatbot = gr.Chatbot(elem_id="chatbot")
state = gr.State([system_template])
with gr.Row():
ask = gr.Textbox(
show_label=False,
placeholder="Enter text and press enter",
sample_inputs=["which country polutes the most ?"],
).style(container=False)
with gr.Column(scale=1, variant="panel"):
gr.Markdown("### Sources")
sources_textbox = gr.Textbox(interactive=False, show_label=False, max_lines=50)
ask.submit(
fn=chat,
inputs=[
user_id_state,
ask,
state,
gr.inputs.Dropdown(
["IPCC only", "All available"],
default="All available",
label="Select reports",
),
],
outputs=[chatbot, state, sources_textbox],
)
ask.submit(reset_textbox, [], [ask])
with gr.Accordion("Feedbacks", open=False):
gr.Markdown("Please complete some feedbacks π")
feedback = gr.Textbox()
feedback_save = gr.Button(value="submit feedback")
# thanks = gr.Textbox()
feedback_save.click(
save_feedback,
inputs=[feedback, user_id_state], # outputs=[thanks]
)
with gr.Accordion("Add your personal openai api key - Option", open=False):
openai_api_key_textbox = gr.Textbox(
placeholder="Paste your OpenAI API key (sk-...) and hit Enter",
show_label=False,
lines=1,
type="password",
)
openai_api_key_textbox.change(set_openai_api_key, inputs=[openai_api_key_textbox])
openai_api_key_textbox.submit(set_openai_api_key, inputs=[openai_api_key_textbox])
with gr.Tab("Information"):
gr.Markdown(
"""
## π Reports used : \n
- First Assessment Report on the Physical Science of Climate Change
- Second assessment Report on Climate Change Adaptation
- Third Assessment Report on Climate Change Mitigation
- Food Outlook Biannual Report on Global Food Markets
- IEA's report on the Role of Critical Minerals in Clean Energy Transitions
- Limits to Growth
- Outside The Safe operating system of the Planetary Boundary for Novel Entities
- Planetary Boundaries Guiding
- State of the Oceans report
- Word Energy Outlook 2021
- Word Energy Outlook 2022
- The environmental impacts of plastics and micro plastics use, waste and polution ET=U and national measures
- IPBES Global report - MArch 2022
\n
IPCC is a United Nations body that assesses the science related to climate change, including its impacts and possible response options.
The IPCC is considered the leading scientific authority on all things related to global climate change.
"""
)
with gr.Tab("Examples"):
gr.Markdown("See here some examples on how to use the Chatbot")
demo.queue(concurrency_count=16)
demo.launch()
|