File size: 3,799 Bytes
a5686cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a906c85
 
a5686cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import gradio as gr
from transformers import pipeline
from haystack.document_stores import FAISSDocumentStore
from haystack.nodes import EmbeddingRetriever
import numpy as np
import openai

classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")

system_template = {
    "role": "system",
    "content": "You have been a climate change expert for 30 years. You answer questions about climate change in an educationnal and concise manner.",
}


document_store = FAISSDocumentStore.load(
    index_path=f"./documents/climate_gpt.faiss",
    config_path=f"./documents/climate_gpt.json",
)
dense = EmbeddingRetriever(
    document_store=document_store,
    embedding_model="sentence-transformers/multi-qa-mpnet-base-dot-v1",
    model_format="sentence_transformers",
)


def is_climate_change_related(sentence: str) -> bool:
    results = classifier(
        sequences=sentence,
        candidate_labels=["climate change related", "non climate change related"],
    )
    return results["labels"][np.argmax(results["scores"])] == "climate change related"


def make_pairs(lst):
    """from a list of even lenght, make tupple pairs"""
    return [(lst[i], lst[i + 1]) for i in range(0, len(lst), 2)]


def gen_conv(query: str, history=[system_template], ipcc=True):
    """return (answer:str, history:list[dict], sources:str)"""
    retrieve = ipcc and is_climate_change_related(query)
    sources = ""
    messages = history + [
        {"role": "user", "content": query},
    ]

    if retrieve:
        docs = dense.retrieve(query=query, top_k=5)
        sources = "\n\n".join(
            ["If relevant, use those extracts from IPCC reports in your answer"]
            + [
                f"{d.meta['path']} Page {d.meta['page_id']} paragraph {d.meta['paragraph_id']}:\n{d.content}"
                for d in docs
            ]
        )
        messages.append({"role": "system", "content": sources})

    answer = openai.ChatCompletion.create(
        model="gpt-3.5-turbo",
        messages=messages,
        temperature=0.2,
        #         max_tokens=200,
    )["choices"][0]["message"]["content"]

    if retrieve:
        messages.pop()
        answer = "(top 5 documents retrieved) " + answer
        sources = "\n\n".join(
            f"{d.meta['path']} Page {d.meta['page_id']} paragraph {d.meta['paragraph_id']}:\n{d.content[:100]} [...]"
            for d in docs
        )

    messages.append({"role": "assistant", "content": answer})

    gradio_format = make_pairs([a["content"] for a in messages[1:]])

    return gradio_format, messages, sources


def connect(text):
    openai.api_key = text
    return "You're all set"


with gr.Blocks(title="Eki IPCC Explorer") as demo:
    with gr.Row():
        with gr.Column():
            api_key = gr.Textbox(label="Open AI api key")
            connect_btn = gr.Button(value="Connect")
        with gr.Column():
            result = gr.Textbox(label="Connection")

    connect_btn.click(connect, inputs=api_key, outputs=result, api_name="Connection")

    gr.Markdown(
        """
        # Ask me anything, I'm an IPCC report
        """
    )

    with gr.Row():
        with gr.Column(scale=2):
            chatbot = gr.Chatbot()
            state = gr.State([system_template])

            with gr.Row():
                ask = gr.Textbox(
                    show_label=False, placeholder="Enter text and press enter"
                ).style(container=False)

        with gr.Column(scale=1, variant="panel"):

            gr.Markdown("### Sources")
            sources_textbox = gr.Textbox(
                interactive=False, show_label=False, max_lines=50
            )

    ask.submit(
        fn=gen_conv, inputs=[ask, state], outputs=[chatbot, state, sources_textbox]
    )

demo.launch(share=True)